目录
A 第几天
2000年的1月1日,是那一年的第1天。
那么,2000年的5月4日,是那一年的第几天?
【Code】
#include<iostream>
using namespace std;
int mouths[] = {0, 31,29,31,30,31};
int main(){
int res = 0;
for(int i = 1; i <= 5; ++i)
for(int j = 1; j <= mouths[i]; ++j){
res ++;
if(i == 5 && j == 4) cout <<res <<endl; // 125
}
return 0;
}
【Answer】
125
B 明码(位运算)
汉字的字形存在于字库中,即便在今天,16 点阵的字库也仍然使用广泛。
16 点阵的字库把每个汉字看成是16 x 16个像素信息,并把这些信息记录在字节中。
一个字节可以存储 8 位信息,用 32 个字节就可以存一个汉字的字形了。
把每个字节转为 2 进制表示,1 表示墨迹,0 表示底色。
每行 2 个 字节,一共 16 行,布局是:
第 1 字节,第 2 字节
第 3 字节,第 4 字节
…
第 31 字节, 第 32 字节这道题目是给你一段多个汉字组成的信息,每个汉字用 32 个字节表示,这里给出了字节作为有符号整数的值。
题目的要求隐藏在这些信息中。你的任务是复原这些汉字的字形,从中看出题目的要求,并根据要求填写答案。
这段信息是(一共 10 个汉字):
4 0 4 0 4 0 4 32 -1 -16 4 32 4 32 4 32 4 32 4 32 8 32 8 32 16 34 16 34 32 30 -64 0 16 64 16 64 34 68 127 126 66 -124 67 4 66 4 66 -124 126 100 66 36 66 4 66 4 66 4 126 4 66 40 0 16 4 0 4 0 4 0 4 32 -1 -16 4 32 4 32 4 32 4 32 4 32 8 32 8 32 16 34 16 34 32 30 -64 0 0 -128 64 -128 48 -128 17 8 1 -4 2 8 8 80 16 64 32 64 -32 64 32 -96 32 -96 33 16 34 8 36 14 40 4 4 0 3 0 1 0 0 4 -1 -2 4 0 4 16 7 -8 4 16 4 16 4 16 8 16 8 16 16 16 32 -96 64 64 16 64 20 72 62 -4 73 32 5 16 1 0 63 -8 1 0 -1 -2 0 64 0 80 63 -8 8 64 4 64 1 64 0 -128 0 16 63 -8 1 0 1 0 1 0 1 4 -1 -2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 5 0 2 0 2 0 2 0 7 -16 8 32 24 64 37 -128 2 -128 12 -128 113 -4 2 8 12 16 18 32 33 -64 1 0 14 0 112 0 1 0 1 0 1 0 9 32 9 16 17 12 17 4 33 16 65 16 1 32 1 64 0 -128 1 0 2 0 12 0 112 0 0 0 0 0 7 -16 24 24 48 12 56 12 0 56 0 -32 0 -64 0 -128 0 0 0 0 1 -128 3 -64 1 -128 0 0
【Solution】
位运算输出
【Code】
#include<iostream>
using namespace std;
int main(){
int a[11][33];
// 数据需要一行一行输入
for(int i = 0; i < 10; ++i)
for(int j = 0; j < 32; ++j)
cin >> a[i][j];
for(int i= 0; i< 10; ++i)
for(int j = 0; j < 32; ++j){
if(j % 2 == 0) cout << endl; // 两个字符换一行
for(int k = 7; k >= 0; --k) cout << (a[i][j] >> k & 1); // 位运算
}
system("pause");
return 0;
}
// 9 ^ 9 = 387,420,489
【Answer】
显示出来的是九的九次方等于的多少?
387420489
C 成绩尾零
如下的10行数据,每行有10个整数,请你求出它们的乘积的末尾有多少个零?
5650 4542 3554 473 946 4114 3871
9073 90 4329 2758 7949 6113 5659 5245 7432 3051 4434 6704 3594
9937 1173 6866 3397 4759 7557 3070 2287 1453 9899
1486 5722 3135 1170 4014 5510 5120 729 2880 9019
2049 698 4582 4346 4427 646 9742 7340 1230 7683
5693 7015 6887 7381 4172 4341 2909 2027 7355 5649
6701 6645 1671 5978 2704 9926 295 3125 3878 6785
2066 4247 4800 1578 6652 4616 1113 6205 3264 2915
3966 5291 2904 1285 2193 1428 2265 8730 9436 7074
689 5510 8243 6114 337 4096 8199 7313 3685 211
【Solution】
保存单独每个数末尾的 2 和 5 的位数,答案就是 min(num_2, num_5)
【Code】
#include<iostream>
using namespace std;
int main(){
int num_5 = 0, num_2 = 0;
for(int i = 0; i < 10; ++i)
for(int j = 0; j < 10; ++j){
int a, t;
cin >> a;
t = a;
while(t % 5 ==0){
num_5 ++;
t /= 5;
}
while(a % 2 == 0){
num_2 ++;
a /= 2;
}
}
cout << min(num_5, num_2) << endl; // 31
return 0;
}
【Answer】
31
D 测试次数(DP)
x星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。
各大厂商也就纷纷推出各种耐摔型手机。x星球的质监局规定了手机必须经过耐摔测试,并且评定出一个耐摔指数来,之后才允许上市流通。
x星球有很多高耸入云的高塔,刚好可以用来做耐摔测试。
塔的每一层高度都是一样的,与地球上稍有不同的是,他们的第一层不是地面,而是相当于我们的2楼。如果手机从第 7 层扔下去没摔坏,但第 8 层摔坏了,则手机耐摔指数 = 7。
特别地,如果手机从第 1 层扔下去就坏了,则耐摔指数 = 0。
如果到了塔的最高层第 n 层扔没摔坏,则耐摔指数 = n
为了减少测试次数,从每个厂家抽样3部手机参加测试。
某次测试的塔高为1000层,如果我们总是采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手机的耐摔指数呢?
请填写这个最多测试次数。
【Solution】
集合意义:f[i][j]
:第 i 层 还有 j 个手机时,最坏运气下(就是每一层都要测一下)的最少测试次数。
分析问题:
第 k 层的测试情况:
- 摔坏了:手机数量减 1 ,下一次要去下一楼测试,最多测试 k - 1次。
- 没摔坏:手机数量不变,下一次要去楼上测试,最多测试 idx - k 次。
状态转移方程
f[ind][cnt] = min(f[ind][cnt], 1 + max(f[k - 1][cnt - 1], f[ind - k][cnt]))
【Code】
#include<iostream>
using namespace std;
int main(){
int n = 1000, m = 3;
int f[1010][5];
// 在最坏的情况下,只有一部手机要测试 i 层 i次
for(int i = 1; i <= n; ++i) f[i][1] = i;
for(int cnt = 2; cnt <= m; ++cnt)
for(int ind = 1; ind <= n; ++ind){
f[ind][cnt] = 1 + f[ind - 1][cnt];
// 分析第k层的情况:摔了,去下一层 + 1; 没摔,去上一层 + 1;
for(int k = 2; k <= ind; ++k)
// min最优策略;max最坏情况
f[ind][cnt] = min(f[ind][cnt], 1 + max(f[k - 1][cnt - 1], f[ind - k][cnt]));
}
cout << f[1000][3] <<endl; // 19
return 0;
}
E 快速排序
以下代码可以从数组a[]中找出第k小的元素。
它使用了类似快速排序中的分治算法,期望时间复杂度是O(N)的。
请仔细阅读分析源码,填写划线部分缺失的内容。
#include <stdio.h> int quick_select(int a[], int l, int r, int k) { int p = rand() % (r - l + 1) + l; int x = a[p]; {int t = a[p]; a[p] = a[r]; a[r] = t;} int i = l, j = r; while(i < j) { while(i < j && a[i] < x) i++; if(i < j) { a[j] = a[i]; j--; } while(i < j && a[j] > x) j--; if(i < j) { a[i] = a[j]; i++; } } a[i] = x; p = i; if(i - l + 1 == k) return a[i]; if(i - l + 1 < k) return quick_select( _____________________________ ); //填空 else return quick_select(a, l, i - 1, k); } int main() { int a[] = {1, 4, 2, 8, 5, 7, 23, 58, 16, 27, 55, 13, 26, 24, 12}; printf("%d\n", quick_select(a, 0, 14, 5)); return 0; }
【Solution】
快速排序模板
边界处理不清,带入程序试验下
以快速排序的标兵为分界。
判断左边的数量和 k 的数值比:
大于的话:继续递归左边
小于的话,递归右边,将 k 将去左边数据的数量。
【Answer】
a , i + 1 , r , k - (i - l + 1)
F 递增三元组(双指针)
给定三个整数数组
A=[A1,A2,…AN],
B=[B1,B2,…BN],
C=[C1,C2,…CN],请你统计有多少个三元组 (i,j,k) 满足:
- 1≤i,j,k≤N
- Ai<Bj<Ck
输入格式
第一行包含一个整数 N。
第二行包含 N 个整数 A1,A2,…AN。
第三行包含 N 个整数 B1,B2,…BN。
第四行包含 N 个整数 C1,C2,…CN。
输出格式
一个整数表示答案。
数据范围
1≤N≤105,
0≤Ai,Bi,Ci≤105输入样例:
3 1 1 1 2 2 2 3 3 3
输出样例:
27
数据范围
对于 30% 的数据,1 ≤ N ≤ 100
对于 60% 的数据,1 ≤ N ≤ 1000
对于 100% 的数据,1 ≤ N ≤ 105,0 ≤ Ai, Bi, Ci ≤ 105
【Solution】
先将三个数组排序。
遍历 b 数组,寻找 a 组中比 b[i] 小的数的右边界,在找 c 组中比 b[i] 大的数的左边界。
每次将 ans += (a组右边届的数量) * (c组左边界的数量)
还有更快的解法(前缀和)
【Code】
#include<iostream>
#include<algorithm>
using namespace std;
const int N= 1e5 +10;
int a[N], b[N], c[N];
int n;
int main(){
cin >> n;
for(int i = 1; i <= n; ++i) cin >> a[i];
for(int i = 1; i <= n; ++i) cin >> b[i];
for(int i = 1; i <= n; ++i) cin >> c[i];
sort(a + 1, a + n + 1);
sort(b + 1, b + n + 1);
sort(c + 1, c + n + 1);
// 注意最多的情况是 10 ^ 15
long long res = 0;
long long x = 1, y = 1;
for(int i = 1; i <= n; ++i){ // 遍历 b 数组
// 边界处理要注意
while(x <= n && a[x] < b[i]) x ++; // 找到 a 组中比 b[i]小的数
while(y <= n && c[y] <= b[i]) y ++; // 找到 b 组中比 b[i]大的数
res += (x - 1) * (n - y + 1); // 边界带入特殊情况判断1的添加
}
cout << res << endl;
return 0;
}
G 螺旋折线(找规律)
如下图所示的螺旋折线经过平面上所有整点恰好一次。
对于整点 (X,Y),我们定义它到原点的距离 dis(X,Y) 是从原点到 (X,Y) 的螺旋折线段的长度。
例如 dis(0,1)=3,dis(−2,−1)=9
给出整点坐标 (X,Y),你能计算出 dis(X,Y) 吗?
输入格式
包含两个整数 X,Y。
输出格式
输出一个整数,表示 dis(X,Y)。
数据范围
−109≤X,Y≤109
输入样例:
0 1
输出样例:
3
【Solution】
寻找数学规律
寻找到四个界限的四个顶角,并找出规律:
层数(1 -> n):每个象限,都有规律的一层一层包括。
顶角规律列出来找;每条边的规律带入特殊点寻找。
第一象限:x >= 0 && y >= 0
- 顶角规律:
1 -> 4 = 2 ^ 2
2 -> 16 = 4 ^ 2
3 -> 36 = 6 ^ 2
...
n -> (n * 2) * (n * 2)
- 两边的数据:
(n * 2) * (n * 2) + x - y;
第二象限:x < 0 && y >= 0
- 顶角规律:
1 -> 2 = 2 * 1
2 -> 12 = 4 * 3
3 -> 30 = 6 * 5
...
n -> 2 * n * (2 * n - 1)
- 两边数据:
2 * n * (2 * n - 1) + x + y;
第三象限:x < 0 && y < 0
- 顶角规律:
1 -> 9 = 3 ^ 2
2 -> 25 = 5 ^ 2
3 -> 49 = 7 ^ 2
...
n -> (2 * n + 1) ^ 2
- 两边数据:
(2 * n + 1) ^ 2 - x + y - 1;
第四象限:x >= 0 && y < 0
- 顶角规律:
1 -> 6 = 2 * 3
2 -> 20 = 4 * 5
3 -> 42 = 6 * 7
...
n -> 2 * n * (2 * n + 1)
- 两边数据:
2 * n * (2 * n + 1) - x - y;
【Code】
#include<iostream>
#include<cstring>
using namespace std;
int main(){
int x, y, t;
cin >> x >> y;
if(x >= 0 && y >= 0){
t = max(x, y);
cout << 1ll * (2 * t) * (2 * t) + x - y << endl;
}
else if(x < 0 && y >= 0){
t = max(-x, y);
cout << 1ll * (2 * t) * (2 * t - 1) + x + y << endl;
}
else if(x >= 0 && y < 0){
t = max(x, -y);
cout << 1ll * (2 * t) * (2 * t + 1) - x - y << endl;
}
else{
if(x < y) t = -x - x - 1;
else t = -y - y + 1;
cout << 1ll * t * t - x + y - 1 << endl;
}
return 0;
}
H 日志统计 (hash)
小明维护着一个程序员论坛。现在他收集了一份”点赞”日志,日志共有 N 行。
其中每一行的格式是:
ts id
表示在 ts 时刻编号 id 的帖子收到一个”赞”。
现在小明想统计有哪些帖子曾经是”热帖”。
如果一个帖子曾在任意一个长度为 D 的时间段内收到不少于 K 个赞,小明就认为这个帖子曾是”热帖”。
具体来说,如果存在某个时刻 TT 满足该帖在 [T,T+D)这段时间内(注意是左闭右开区间)收到不少于 K 个赞,该帖就曾是”热帖”。
给定日志,请你帮助小明统计出所有曾是”热帖”的帖子编号。
输入格式
第一行包含三个整数 N,D,K。
以下 N 行每行一条日志,包含两个整数 ts 和 id。
输出格式
按从小到大的顺序输出热帖 id。
每个 id 占一行。
数据范围
1≤K≤N≤105,
0≤ts,id≤105,
1≤D≤10000输入样例:
7 10 2 0 1 0 10 10 10 10 1 9 1 100 3 100 3
输出样例:
1 3
【Solution】
使用哈希表将id相同的数据存起来,分别来判断是否为热帖。
【Code】
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int N = 1e5 + 10;
vector<int> a[N];
vector<int> ans;
int n, d, k;
bool judge(int x){
int len = a[x].size();
if(len < k) return false;
sort(a[x].begin(), a[x].end());
int l = 0,r = 0,sum = 0;
while(l<= r&&r< len)
{
sum++;
if(sum>= k)
if(a[x][r]-a[x][l]< d) return 1; //注意是小于
l++,sum--;
r++;
}
return 0;
}
int main(){
cin >> n >> d >> k;
for(int i = 0; i < n; ++i){
int x, y;
cin >> x >> y;
a[y].push_back(x);
}
for(int i = 1; i < N; ++i)
if(judge(i))
ans.push_back(i);
for(int x : ans) cout << x << endl;
return 0;
}
I 全球变暖(Flood fill)
你有一张某海域 N×N 像素的照片,”.”表示海洋、”#”表示陆地,如下所示:
....... .##.... .##.... ....##. ..####. ...###. .......
其中”上下左右”四个方向上连在一起的一片陆地组成一座岛屿,例如上图就有 2 座岛屿。
由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围会被海水淹没。
具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。
例如上图中的海域未来会变成如下样子:
....... ....... ....... ....... ....#.. ....... .......
请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。
输入格式
第一行包含一个整数N。
以下 N 行 N 列,包含一个由字符”#”和”.”构成的 N×N 字符矩阵,代表一张海域照片,”#”表示陆地,”.”表示海洋。
照片保证第 1 行、第 1 列、第 N 行、第 N 列的像素都是海洋。
输出格式
一个整数表示答案。
数据范围
1≤N≤1000
输入样例1:
7 ....... .##.... .##.... ....##. ..####. ...###. .......
输出样例1:
1
输入样例2:
9 ......... .##.##... .#####... .##.##... ......... .##.#.... .#.###... .#..#.... .........
输出样例2:
1
【Solution】
flood fill 模板题,遍历一遍矩阵,并用一个标记判断是都会全部被淹没。
【Code】
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<unordered_map>
using namespace std;
typedef pair<int, int> PII;
const int N = 1010;
int g[N][N];
int n;
bool flag;
int dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1};
void dfs(int x, int y){
g[x][y] = 2;
if(g[x - 1][y] >= 1 && g[x][y - 1] >= 1 && g[x + 1][y] >= 1 && g[x][y + 1] >= 1) flag = true;
for(int i = 0; i < 4; ++i){
int a = x + dx[i];
int b = y + dy[i];
if(g[a][b] == 1) dfs(a, b);
}
}
int main(){
cin >> n;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
{
char op;
cin >> op;
g[i][j] = op == '.' ? 0 : 1;
}
int ans = 0;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j){
flag = false;
if(g[i][j] == 1){
dfs(i, j);
if(!flag) ans ++;
}
}
cout << ans << endl;
return 0;
}
J 乘积最大(贪心)
给定 N 个整数 A1,A2,…AN。
请你从中选出 K 个数,使其乘积最大。
请你求出最大的乘积,由于乘积可能超出整型范围,你只需输出乘积除以 1000000009 的余数。
注意,如果 X<0, 我们定义 XX 除以 1000000009 的余数是负(−X)除以 1000000009 的余数,即:0−((0−x)%1000000009)
输入格式
第一行包含两个整数 N 和 K。
以下 N 行每行一个整数 Ai。
输出格式
输出一个整数,表示答案。
数据范围
1≤K≤N≤105,
−105≤Ai≤105输入样例1:
5 3 -100000 -10000 2 100000 10000
输出样例1:
999100009
输入样例2:
5 3 -100000 -100000 -2 -100000 -100000
输出样例2:
-999999829
【Solution】
对 k 分情况讨论
k == n :全部输出
k < n:
- k 为偶数:答案绝对为非负数
证明:
全为负数:负数个数为偶数,负负得正,
负数得个数为奇数,挑选偶数个绝对值最大的负数,再加上正数
- k 为奇数:全为负数的话,挑选绝对值最小的数;存在一个非负数的情况,挑选出他,再加上偶数个绝对值大的负数即可。
【Code】
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10, MOD = 1000000009;
int n, k;
int a[N];
int main(){
cin >> n >> k;
for(int i = 0; i < n; ++i) cin >> a[i];
sort(a, a + n);
int l = 0, r = n - 1;
int ans = 1;
int sign = 1;
if(k % 2){ // k为奇数的时候处理
ans = a[r]; // 取最大值
r--;
k--;
if(ans < 0) sign = -1; // 如果全是负数的话
}
// cout << ans << endl;
while(k){
LL x = 1ll * a[l] * a[l + 1], y = 1ll * a[r] * a[r - 1];
// cout << x << " " << y << endl;
if(x * sign > y * sign){
// ans = (x % MOD) * (ans * MOD) // 注意逻辑,这种写法是错误的.
ans = x % MOD * ans % MOD;
l += 2;
}
else{
ans = y % MOD * ans % MOD;
r -= 2;
}
k -= 2;
}
cout << ans << endl;
return 0;
}
考试小技巧:
- 碰到没有回车的数据,放到记事本即可;
- 判断数据行数也可以放到记事本中