题目描述
对于一个 n 个顶点的凸多边形,它的任何三条对角线都不会交于一点。请求出图形中对角线交点的个数。
例如,6 边形:
输入格式
输入只有一行一个整数 n,代表边数。
输出格式
输出一行一个整数代表答案。
输入输出样例
输入 #1
3
输出 #1
0
输入 #2
6
输出 #2
15
说明/提示
数据规模与约定
对于 50% 的数据,保证 3≤n≤100。
对于 100% 的数据,保证 3≤n≤10^5
分析:
n多边形的对角线交点是两条线的交点,涉及4个点,即一个四边形的对角线交点。
题目转化为n多边形可以形成多少个不同的四边形,即求组合数
公式:n ×(n-1)× (n-2) × (n-3) / 24
题目数据比较大,要用到高精度,但是也可以避免高精度
n ×(n-1)/ 2 × (n-3) / 3 × (n-3) / 4
因为 n,n-1 必有一个可以整除2,同理 n,n-1,n-2 必有一个可以整除3,那么4也是一样
学习:unsigned long long 比long long 多了1位(用long long 不过,用unsigned long long能过)
#include<bits/stdc++.h>
#define ll unsigned long long
using namespace std;
const int N=100;
int main(){
ll n;
scanf("%lld",&n);
ll a;
a=n*(n-1)/2*(n-2)/3*(n-3)/4;
printf("%lld",a);
return 0;
}