题目描述
司令部的将军们打算在 N\times MN×M 的网格地图上部署他们的炮兵部队。
一个 N\times MN×M 的地图由 NN 行 MM 列组成,地图的每一格可能是山地(用 \texttt{H}H 表示),也可能是平原(用 \texttt{P}P 表示),如下图。
在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。
图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
输入格式
第一行包含两个由空格分割开的正整数,分别表示 NN 和 MM。
接下来的 NN 行,每一行含有连续的 MM 个字符,按顺序表示地图中每一行的数据。
输出格式
一行一个整数,表示最多能摆放的炮兵部队的数量。
输入输出样例
输入 #1 复制
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
输出 #1 复制
6
说明/提示
对于 100%100% 的数据,N\le 100N≤100,M\le 10M≤10,保证字符仅包含 p 与 h。
分析:
先预处理第一行和第二行的状态,dp[i][j][k]表示第i行状态为j,上一行状态为k的部队数量。
数组要开的小一点,不然会内存超限
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1<<10;
int cur[105],dp[105][200][200],s[N],w[N];
char ma[11];
int get(int x)//计算x中有多少个1
{
int sum=0;
while(x)
{
x=x&(x-1);
sum++;
}
return sum;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%s",ma);
for(int j=0;j<m;j++)
{
if(ma[j]=='H') cur[i]+=(1<<j);//记录山地
}
}
int p=1<<m,top=0;
for(int i=0;i<p;i++)
{
if(((i&(i<<1))==0)&&((i&(i<<2))==0)&&((i&(i>>1))==0)&&((i&(i>>2))==0))
{
s[++top]=i;
w[top]=get(i);
if((i&cur[1])==0) //部队不能在山地上
{
dp[1][top][0]=w[top];//第一行的可行的状态
}
}
}
for(int i=1;i<=top;i++)//枚举第一行
{
if(s[i]&cur[1]) continue;
for(int j=1;j<=top;j++)//枚举第二行
{
if(s[j]&cur[2]) continue;
if(s[i]&s[j]) continue;//部队不能上下相邻
dp[2][j][i]=max(dp[2][j][i],dp[1][i][0]+w[j]);
//第二行的状态
}
}
for(int i=3;i<=n;i++)
{
for(int j=1;j<=top;j++)//枚举第i行的状态
{
if(s[j]&cur[i]) continue;
for(int k=1;k<=top;k++)//枚举第i-1行的状态
{
if(s[k]&cur[i-1]) continue;
if(s[k]&s[j]) continue;
for(int z=1;z<=top;z++)//枚举第i-2行的状态
{
if(s[z]&cur[i-2]) continue;
if(s[j]&s[z]) continue;
dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][z]+w[j]);
}
}
}
}
int ans=0;
for(int i=1;i<=top;i++)
{
for(int j=1;j<=top;j++)
ans=max(dp[n][i][j],ans);
}
printf("%d",ans);
return 0;
}