区间 DP | LeetCode-312. 戳气球

题目描述

原题链接

n 个气球,编号为0n - 1,每个气球上都标有一个数字,这些数字存在数组 nums 中。

现在要求你戳破所有的气球。戳破第 i 个气球,你可以获得 nums[i - 1] * nums[i] * nums[i + 1] 枚硬币。 这里的 i - 1i + 1 代表和 i 相邻的两个气球的序号。如果 i - 1i + 1 超出了数组的边界,那么就当它是一个数字为 1 的气球。

求所能获得硬币的最大数量。

问题分析

考虑戳破编号从 i 到 j 的气球,所能获取硬币的最大值。我们假设,最后戳破的气球的编号为 k ,则所能获取硬币的最大值是从 i 到 k -1 的最大值加上从 k+1 到 j 的最大值,最后加上戳破 k 所能获取的硬币数。通过遍历 k 的每个取值,我们最终就能获取戳破编号从 i 到 j 的气球,所能获取硬币的最大值。

上述的分析是自上而下的。可以发现,问题规模较大的解是通过问题规模较小的解组合而成的。因此,我们可以自下而上,采用区间 DP 的策略,从区间长度为 2 的规模,一直遍历到区间长度为 n 的规模,最终得到最优解。

为了简化状态计算过程,我们可以在数组的首尾分别添加一个元素 1,防止计算过程中下标越界。

算法描述

状态定义dp[i][j]表示戳破编号从 i 到 j 的气球,所能获取硬币的最大值。

状态计算dp[i][j] = max(dp[i][j], dp[i][k-1] + dp[k+1][j] + a[i-1]*a[k]*a[j+1])

边界情况

  • dp[i][i] = a[i-1]*a[i]*a[i+1]
  • i > jdp[i][j] = 0

复杂度法分析

时间复杂度: O ( n 3 ) O(n^3) O(n3)
空间复杂度: O ( n 2 ) O(n^2) O(n2)

程序代码

class Solution {
public:
    int maxCoins(vector<int>& nums) {
        int n = nums.size();
        vector<int> a(n + 2);
        for(int i = 1; i <= n; i++) {
            a[i] = nums[i-1];
        }
        a[0] = a[n+1] = 1;
  
        vector<vector<int>> dp(n + 2, vector<int>(n + 2, 0));

        for(int i = 1; i <= n; i++) {
            dp[i][i] = a[i-1]*a[i]*a[i+1];
        }

        for(int len = 2; len <= n; len++) {
            for(int i = 1; i <= n - len + 1; i++) {
                int j = i + len - 1;
                for(int k = i; k <= j; k++) {
                    dp[i][j] = max(dp[i][j], dp[i][k-1] + dp[k+1][j] + a[i-1]*a[k]*a[j+1]);
                }
            }
        }

        return dp[1][n];
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统动态规划也广泛应用于各种优化算法,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列,第j个元素的值。 在LeetCode动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值