Could not load dynamic library ‘libcusolver.so.11‘; dlerror: libcusolver.so.11: cannot open shared o

Could not load dynamic library 'libcusolver.so.11'; dlerror: libcusolver.so.11: cannot open shared object file: No such file or directory;

题目描述:libcusolver.so.11 error

Traceback (most recent call last):
File “/home/kz/zzk/FaceDancer/multi_face_single_source.py”, line 180, in
swap(opt)
File “/home/kz/zzk/FaceDancer/multi_face_single_source.py”, line 27, in swap
tf.config.set_visible_devices(gpus[opt.device_id], ‘GPU’)
IndexError: list index out of range

然后发现:

W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library ‘libcusolver.so.11’; dlerror: libcusolver.so.11: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/kz/anaconda3/envs/fdancer/lib/python3.9/site-packages/cv2/…/…/lib64:
2022-12-09 10:19:29.845288: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1934] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices…

解决思路一:修改环境,是环境问题!

该问题有两个重点,第一个是CUDA组件版本,第二个是libcusolver.so.10错误。
1、CUDA 组件版本
这是 CUDA 版本与其组件版本之间的某种异步关系。
如果您使用 TensorFlow 2.4,您可能会使用 CUDA 11.0。查看 CUDA 11.0 发布文档。您可以找到以下列表。

This release of the toolkit includes the following updates:

CUDA Math libraries toolchain uses C++11 features, and a C++11-compatible standard library is required on the host.
cuBLAS 11.0.0
cuFFT 10.1.3
cuRAND 10.2.0
cuSPARSE 11.0.0
cuSOLVER 10.4.0
NPP 11.0.0
nvJPEG 11.0.0

上面的列表得出结论,CUDA 11.0 确实包含一些版本为 10 的组件。
顺便说一句,从 CUDA 11.1 开始,您会发现 cusolver.so 版本高于 11。

2、libcusolver.so.10 error
这是由环境变量 LD_LIBRARY_PATH 引起的错误。
如果您使用终端,您可能已经设置了 LD_LIBRARY_PATH,其中包含 /usr/local/cuda-11.0/lib64。
如果您使用 PyCharm 或其他 IDE,您还需要检查环境变量。
环境变量只是默认变量:PYTHONUNBUFFERED=1,你会得到:
W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library ‘libcusolver.so.10’; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory
环境变量为 LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:/usr/local/lib 时,您将得到:
I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10

最终解决的代码命令!

export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:/usr/local/lib:$LD_LIBRARY_PATH

感谢老师早上帮我debug,呜呜~!
2022-12-09 10:19:29
参考链接


创作不易,观众老爷们请留步… 动起可爱的小手,点个赞再走呗 (๑◕ܫ←๑)
欢迎大家关注笔者,你的关注是我持续更博的最大动力


原创文章,转载告知,盗版必究



在这里插入图片描述


在这里插入图片描述
♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠

这个错误提示"Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory"通常是由于缺少"CUDNN"库文件或者文件路径配置有误引起的。 "CUDNN"是一个用于深度学习框架TensorFlow的库文件,它提供了一些加速计算的函数和工具。解决这个问题的方法有以下几种: 1. 检查"CUDNN"库文件是否存在。你可以通过在命令行中输入"ls /usr/local/cuda-11.0/lib64"来查看库文件是否存在。如果不存在,你需要安装"CUDA"和"CUDNN",并确保将库文件放在正确的路径下。 2. 检查文件路径配置是否正确。你可以通过设置环境变量"LD_LIBRARY_PATH"来指定库文件的路径。确保这个环境变量中包含了"CUDNN"库文件所在的路径,比如"/usr/local/cuda-11.0/lib64"。 3. 如果你已经正确安装了"CUDA"和"CUDNN",但仍然出现这个错误,可能是因为版本号不匹配导致的。你可以尝试升级或降级"CUDNN"的版本,使其与你的深度学习框架版本兼容。 总结来说,解决这个问题的关键是确保"CUDNN"库文件已经正确安装,并且文件路径配置正确。如果问题仍然存在,你可能需要进一步检查深度学习框架和库文件的版本兼容性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [tensorflow调用GPU出错:Could not load dynamic librarylibcudnn.so.8](https://blog.csdn.net/weixin_44133816/article/details/126216461)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Ubuntu下TensorFlow报错:Could not load dynamic librarylibcudnn.so.8‘; dlerror: libcudnn.so.8: ...](https://blog.csdn.net/weixin_46584887/article/details/122729896)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Could not load dynamic library 'cudart64_110.dll'; dlerror: cuda](https://download.csdn.net/download/xiangzidejia/86723763)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值