【arxiv 2024.02】HumanSplat: Generalizable Single-Image Human Gaussian Splatting with Structure Priors

一、前言

Jingbo Zhang, Xiaoyu Li, Qi Zhang, Yanpei Cao, Ying Shan, Jing Liao

【Paper】 > 【Github_Code】 > 【Project】

Abstract

问题:尽管高保真人体重建技术最近取得了进展,但对密集捕获图像或耗时的每个实例优化的要求极大地阻碍了它们在更广泛场景中的应用。
方法介绍:为了解决这些问题,我们提出了 HumanSplat,它可以以通用的方式从单个输入图像中预测任何人类的 3D 高斯 Splatting 属性。特别是,HumanSplat 包含一个 2D 多视图扩散模型和一个具有人体结构先验的潜在重建变压器,能够在统一框架内巧妙地集成几何先验和语义特征。进一步设计了包含人类语义信息的分层损失,以实现高保真纹理建模并更好地约束估计的多个视图。
实验:对标准基准和野外图像的综合实验表明,HumanSplat 在实现逼真的新视图合成方面超越了现有的最先进方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值