电子科技大学数学实验3.线性代数实验

文章介绍了使用Matlab进行线性代数实验,包括求解线性方程组、旋转变换矩阵的构建以及生物数量变化模型的模拟。实验中展示了如何通过矩阵的左除运算符解决方程组,并探讨了生物群体在不同年龄组的数量变化规律,以及杀虫剂影响下的稳定性问题。通过特征值和特征向量分析,解释了生物数量随时间的变化趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3 线性代数实验

1.1 基础训练

  1. 用左除运算符求解线性方程组

{ 7 x 1 + x 2 + 2 x 3 − x 4 = 6 , 2 x 1 + 6 x 2 + x 3 + 3 x 4 = 5 , x 1 − 4 x 2 + 10 x 3 + 3 x 4 = 4 , 2 x 1 − x 2 − 3 x 3 + 11 x 4 = 3. \left\{\begin{matrix}7x_1+x_2+2x_3-x_4=6,\\2x_1+6x_2+x_3+3x_4=5,\\x_1-4x_2+10x_3+3x_4=4,\\2x_1-x_2-3x_3+11x_4=3.\\\end{matrix}\right. 7x1+x2+2x3x4=6,2x1+6x2+x3+3x4=5,x14x2+10x3+3x4=4,2x1x23x3+11x4=3.

​ 返回解向量(1个返回参数)。注:要求本问题不使用符号计算函数solve解线性方程组。

​ 首先我们根据方程定义系数矩阵A和常数矩阵B 设未知数所组成的列向量为X

​ 由AX=B X=A^-1*B

A=[7 1 2 -1
    2 6 1 3
    1 -4 10 3
    2 -1 -3 11];
B=[6;5;4;3];
X=A\B
X =

    0.7299
    0.3828
    0.3953
    0.2826

  1. 基础知识:假定现在要在平面上旋转一个物体,需要绘制物体的旋转过程。由于绘制过程需要知道物体上各点的坐标,而旋转过程中物体上点的坐标是不断变化的。因此,绘制过程需要跟踪物体坐标的变化. 问题可以归结为已知旋转角度 θ \theta θ,旋转前P点的坐标为 ( x , y )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值