3 线性代数实验
1.1 基础训练
- 用左除运算符求解线性方程组
{ 7 x 1 + x 2 + 2 x 3 − x 4 = 6 , 2 x 1 + 6 x 2 + x 3 + 3 x 4 = 5 , x 1 − 4 x 2 + 10 x 3 + 3 x 4 = 4 , 2 x 1 − x 2 − 3 x 3 + 11 x 4 = 3. \left\{\begin{matrix}7x_1+x_2+2x_3-x_4=6,\\2x_1+6x_2+x_3+3x_4=5,\\x_1-4x_2+10x_3+3x_4=4,\\2x_1-x_2-3x_3+11x_4=3.\\\end{matrix}\right. ⎩ ⎨ ⎧7x1+x2+2x3−x4=6,2x1+6x2+x3+3x4=5,x1−4x2+10x3+3x4=4,2x1−x2−3x3+11x4=3.
返回解向量(1个返回参数)。注:要求本问题不使用符号计算函数solve解线性方程组。
首先我们根据方程定义系数矩阵A和常数矩阵B 设未知数所组成的列向量为X
由AX=B X=A^-1*B
A=[7 1 2 -1
2 6 1 3
1 -4 10 3
2 -1 -3 11];
B=[6;5;4;3];
X=A\B
X =
0.7299
0.3828
0.3953
0.2826
- 基础知识:假定现在要在平面上旋转一个物体,需要绘制物体的旋转过程。由于绘制过程需要知道物体上各点的坐标,而旋转过程中物体上点的坐标是不断变化的。因此,绘制过程需要跟踪物体坐标的变化. 问题可以归结为已知旋转角度 θ \theta θ,旋转前P点的坐标为 ( x , y )