7-1 N个数求和 (20 分)

7-1 N个数求和 (20 分)

本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。

输入格式:
输入第一行给出一个正整数N(≤100)。随后一行按格式a1/b1 a2/b2 …给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。

输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。

输入样例1:
5
2/5 4/15 1/30 -2/60 8/3
输出样例1:
3 1/3

输入样例2:
2
4/3 2/3
输出样例2:
2

输入样例3:
3
1/3 -1/6 1/8
输出样例3:
7/24

#include <bits/stdc++.h>
using namespace std;

typedef struct node{
	int fenzi;
	int fenmu;
}data;

long GongYin(int a,int b){ //最大公因数 
	int temp;
	if(a<b){
		temp = a;
		a = b;
		b = temp;
	}
	while(b!=0){
		temp = a%b;
		a = b;
		b = temp;
	}
	return a;
}

long GongBei(int a,int b){ //最小公倍数 
	return a*b/GongYin(a,b);
}

int main(){
    int N;
	long m,n,sum=0;
    data d[101];
    char c;
    cin >> N;
    for(int i=0; i<N; i++){
        cin >> d[i].fenzi >> c >> d[i].fenmu;
    }
    
    m = d[0].fenmu;
    for(int i=1; i<N; i++){
    	m = GongBei(m,d[i].fenmu); //分母的最小公倍数 
	}
	
	for(int i=0; i<N; i++){
		sum += d[i].fenzi*m/d[i].fenmu; //分子求和 
	}
	if(sum<0)
		cout << "-"; //处理负数 
	if(sum==0){
		cout << 0;
		return 0;
	}
	sum = abs(sum); //由于前面判断负数并输出了负号,这里对sum取绝对值 
	n = GongYin(sum,m); //分子和分母的最大公因数 
	sum /= n;
	m /= n;
	if(sum>=m){
		int t = sum - (sum/m)*m;
		if(t!=0)
			cout << sum/m << " " << t << "/" << m << endl;
		else
			cout << sum/m;
	}
	else 
		cout << sum << "/" << m;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值