7-1 N个数求和 (20 分)
本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。
输入格式:
输入第一行给出一个正整数N(≤100)。随后一行按格式a1/b1 a2/b2 …给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1:
5
2/5 4/15 1/30 -2/60 8/3
输出样例1:
3 1/3
输入样例2:
2
4/3 2/3
输出样例2:
2
输入样例3:
3
1/3 -1/6 1/8
输出样例3:
7/24
#include <bits/stdc++.h>
using namespace std;
typedef struct node{
int fenzi;
int fenmu;
}data;
long GongYin(int a,int b){ //最大公因数
int temp;
if(a<b){
temp = a;
a = b;
b = temp;
}
while(b!=0){
temp = a%b;
a = b;
b = temp;
}
return a;
}
long GongBei(int a,int b){ //最小公倍数
return a*b/GongYin(a,b);
}
int main(){
int N;
long m,n,sum=0;
data d[101];
char c;
cin >> N;
for(int i=0; i<N; i++){
cin >> d[i].fenzi >> c >> d[i].fenmu;
}
m = d[0].fenmu;
for(int i=1; i<N; i++){
m = GongBei(m,d[i].fenmu); //分母的最小公倍数
}
for(int i=0; i<N; i++){
sum += d[i].fenzi*m/d[i].fenmu; //分子求和
}
if(sum<0)
cout << "-"; //处理负数
if(sum==0){
cout << 0;
return 0;
}
sum = abs(sum); //由于前面判断负数并输出了负号,这里对sum取绝对值
n = GongYin(sum,m); //分子和分母的最大公因数
sum /= n;
m /= n;
if(sum>=m){
int t = sum - (sum/m)*m;
if(t!=0)
cout << sum/m << " " << t << "/" << m << endl;
else
cout << sum/m;
}
else
cout << sum << "/" << m;
return 0;
}