Mashmokh and ACM(sdau19训练)

【Question】

A sequence of l integers b1, b2, …, bl (1 ≤ b1 ≤ b2 ≤ … ≤ bl ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally for all i (1 ≤ i ≤ l - 1).
Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007 (109 + 7).

【Input】

The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).

【Output】

Output a single integer — the number of good sequences of length k modulo 1000000007 (109 + 7).

【Examples】

Input1

3 2

Output1

5

Input2

6 4

Output2

39

Input3

2 1

Output3

2

【Note】

In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].

【思路】

题意是找串中满足有n个1的所有子串个数
设数组ap[i][j]为长度为i结尾为j的个数,看代码叭,有注释

【源代码】

#include<iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define MOD 1000000007
int dp[3000][3000];
int main(){
    int n,k;
    cin >> n >> k;
    for (int i=0;i<=n;i++)    //初始化,长度为1,方法量为1
        dp[1][i] = 1;
    for (int i=1;i<k;i++)      //遍历序列长度
        for (int j=1;j<= n;j++)    //以j结尾
            for (int m=j;m<=n;m+=j)  //找结尾是j倍数的把dp[i][j]加上
                dp[i+1][m] = (dp[i+1][m]+dp[i][j])%MOD;
    long long ans = 0;
    for (int i=1; i<= n;i++)
        ans=(ans+dp[k][i])%MOD;
    cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅梦曾倾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值