【Android Studio】下载安装过程(详细)

目录

一、前期准备

JDK下载安装

二、下载安装

下载

安装

启动


一、前期准备

JDK下载安装

详细的安装过程请移步我的另一篇博客jdk17详细安装步骤_jdk17安装教程详细-CSDN博客

cmd打开命令行,输入java -version验证,可以看到此处我安装的是java23。

因为Android studio安装的前提是必须保证安装了jdk1.8版本以上。

二、下载安装

下载

打开官网下载地址,找到要安装的版本,

官网地址:下载 Android Studio 和应用工具 - Android 开发者  |  Android Developers

下载完成后找到安装包。

安装

(1)等待下载完成之后,双击android-studio的exe文件运行,打开后点击 Next 继续下一步,

在安装到第二步的时候,会跳转到Choose Components界面。

其中,界面中的Android Virtual Device,是系统自带模拟器,也可不用系统模拟器就不勾选,自己下载其他模拟器。

这里我们保持现状,默认选择的内容就好。

点击 Next 继续下一步,

(2)跳转到安装路径界面

安装向导会提示你选择安装位置。

如果需要修改安装目录,可点击 Browse…修改,点击 Next 继续下一步(这里我们选择默认安装目录)

(3)点击 Install 安装,跳转到安装界面,

软件会自动完成解压和必要的文件配置。此过程可能需要几分钟时间,请耐心等待。

安装完毕之后,点击 Next 继续下一步,

(4)点击Next,跳转到下图界面,默认勾选Start Android Studio,也可以不勾选Start Android Studio,这里我选择默认勾选。

启动

(1)开始启动Android Studio,弹出导入设置文件的界面,我这里直接选择Do not import settings,

  • 如果本地有设置文件,选择Config or installation folder
  • 如果本地没有设置文件,选择Do not import settings

点击OK,然后跳转到Data Sharing界面,系统会提示是否发送用户数据,选择Don’t send即可跳过发送用户数据。

根据自己用途选择,我这里选择Don’t send。

如果没有遇到,跳过这一步。

点击Cancel,跳转到AS的安装向导界面,如图, 

(2)击Next,跳转到安装类型界面,可以选择Standard(标准)按装,也可以选择 Custom(自定义)安装。

默认选择标准安装,我这里选择的是Custom,点击Next下一步,

(3)点击Next,跳转到UI界面风格界面,选择你自己喜欢的风格,我这里选择默认。

(4)点击Next,跳转的安装SDK界面,默认选择,选择安装的路径。

首次启动会提示安装 Android SDK,根据需要选择安装的组件。由于此处我选择的路径下已经安装过SDK了,因此只需要安装一些未安装的。

(5)点击Next,跳转内存分配界面,默认就好,内存主要看你自己电脑内存,每个人的电脑内存是不一样的。

(6)点击Next,确认安装配置界面, 

点击Finish,跳转到SDK下载安装界面。

开始下载安装,过程可能稍慢,请耐心等待(此步为在线安装,请保持网络通畅)。

下载完成后会提示配置完成,出现以下界面,点击Finish即可。 

OK,到此,Android Studio就安装完成了。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水w

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值