生日蛋糕 dfs剪枝优化

7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。
令Q = Sπ
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。
(除Q外,以上所有数据皆为正整数)
Input
有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。
Output
仅一行,是一个正整数S(若无解则S = 0)。
Sample Input

100
2

Sample Output

68

Hint
圆柱公式
体积V = πR 2H
侧面积A’ = 2πRH
底面积A = πR 2

这题应该用dfs做,但是纯暴力肯定过不了,优化一下。1:搜索顺序,老样子从大蛋糕往下枚举,因为他的子节点少,同时先枚举大的半径,再枚举大的高度,因为半径是平方级别,可以让体积更大,2:下面每一层的蛋糕的半径和高度肯定要严格小于上一次的半径和高度,同时应该小于总体积减上面的体积开根号,因为最大的时候也只有高度为1的时候,高度要小于(n-v)/r/r 每层的半径和高度要大于等于u 3:可以预处理一下当前层的最小估价minv和mins,如果s+mins大于等于答案那么就没必要继续下去了(最优性剪枝),如果v+minv大于体积也没必要了4:4是最难推的,(鬼畜剪枝),推导如下
在这里插入图片描述

#include<bits/stdc++.h>
using   namespace std;
const   int N=25;
int H[N],R[N];
int minv[N],mins[N];
int n,m;
int ans=1e9;
void dfs(int u,int v,int s)
{
    if(minv[u]+v>n) return ;
    if(mins[u]+s>=ans)  return;
    if(2*(n-v)/R[u+1]+s>=ans)   return ;
    if(!u)
    {
        if(n==v)
        ans=s;
        return;
    }
    for(int r=min(R[u+1]-1,(int)sqrt(n-v));r>=u;r--)
    for(int h=min(H[u+1]-1,(n-v)/r/r);h>=u;h--)
    {
        int t=0;
        if(u==m)
        t=r*r;
        H[u]=h,R[u]=r;
        dfs(u-1,v+r*r*h,s+t+2*r*h);
    }
    
    
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        minv[i]=minv[i-1]+i*i*i;
        mins[i]=mins[i-1]+2*i*i;
    }
    R[m+1]=1e9,H[m+1]=1e9;
    dfs(m,0,0);
    cout<<ans<<endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
DFS(深度优先搜索)是一种常见的图遍历算法,它使用递归或栈的方式,从一个顶点出发,沿着一条路径一直到达最深的节点,然后回溯到上一层继续遍历其他节点。DFS常被用于解决图的连通性问题、路径问题等。在实际应用中,可以使用DFS进行状态搜索、图的遍历、拓扑排序等。 剪枝是指在搜索过程中,通过一系列的策略判断,提前终止当前搜索分支,并跳过一些无用的搜索路径,从而减少搜索时间。剪枝的核心在于提前排除某些明显不符合条件的状态,以减少无效搜索的时间开销,提高效率。在算法设计中,剪枝通常会利用一些特定的性质或条件进行判断,从而缩小搜索空间。 动态规划是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划通常用于求解最优化问题,它通过定义状态和状态转移方程,采用自底向上的思路,逐步求解每个子问题的最优值,最终得到原问题的最优解。动态规划的核心是存储已经计算过的子问题的解,避免了重复计算。 贪心算法是一种基于局部最优解的策略,它通过每一步选择在当前状态下最优的解,以期望得到全局最优解。贪心算法的基本思想是由局部最优解推导出全局最优解,通常通过贪心选择性质、最优子结构和贪心选择构成三部分。贪心算法相比其他算法,如动态规划,它的优势在于简单、高效,但缺点在于不能保证获取到全局最优解,只能得到一个近似解。 综上所述,DFS剪枝、动态规划和贪心算法在算法设计和问题求解中都发挥着重要的作用。具体使用哪种算法取决于问题的性质和要求,需要在实际应用中进行综合考虑和选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值