Tree Xor(线段树)

link
题意:
给定一颗树和每条边两个相邻节点的异或值,和每个节点的取值范围 Li~Ri,求有多少种取点的合法方案。
思路:
先确定根节点的值,那么所有值都确定了,那么也就是求所有区间异或上各自对应的点值,很可惜,区间异或不具有连续性,也就是说会分裂成好几个区间,那么有个做法就是按照线段树的建树方法来分裂区间,这些区间满足前缀不变,后缀为00000~111111,这样的区间也是具有连续性的,我们可以将每一个区间分裂成最多logn个区间,然后区间排序,求被覆盖n次的点的数量,类似于扫描线的做法。复杂度O(nlogn^2),还有个trie树O(nlogn)的做法,待更qwq。

Code

// Problem: Tree Xor
// Contest: NowCoder
// URL: https://ac.nowcoder.com/acm/contest/11255/E
// Memory Limit: 524288 MB
// Time Limit: 4000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define x first
#define y second
typedef pair<int,int> pii;
const int N = 200010;
#define pb push_back 
vector<pii>v[N];
int val[N];
pii q[N];
void dfs(int u,int fa,int dd)
{
	val[u] = (val[fa] ^ dd );
	for(auto j:v[u])
	{
		if(j.x == fa)	continue;

		dfs(j.x,u,j.y);
	}
}
vector<pii>seg;
vector<pii>segto;
void get(int l,int r,int L,int R,int len,int val)
{
	if(L>=l  && R<=r)
	{
		int xx=(val^L)&(((1<<30)-1)^((1<<len)-1));
		int yy=xx+(1<<len)-1;
		seg.pb({xx,yy});
		return; 
	}
	int mid=L+R>>1;
	if(l<=mid)	get(l,r,L,mid,len-1,val);
	if(r>mid)	get(l,r,mid+1,R,len-1,val);
}
int main()
{
	int n;
	cin >> n ;
	for(int i=1;i<=n;i++)
		cin >> q[i].x >> q[i].y;
	for(int i=0;i<n-1;i++)
	{
		int a,b,c;
		cin >> a >> b >> c;
		v[a].pb({b,c});
		v[b].pb({a,c});
	}
	dfs(1,0,0);
	seg.pb({q[1].x,q[1].y});
	for(int i=2;i<=n;i++)
		get(q[i].x,q[i].y,0,(1<<30)-1,30,val[i]);
	for(auto o:seg)
		segto.pb({o.x,1}),segto.pb({o.y+1,-1});
		sort(segto.begin(),segto.end());
		int cnt=0;
		int res=0;
	for(int i=0;i<segto.size();i++)
	{
		auto o=segto[i];
		cnt+=o.y;
		if(cnt==n)
		{
			res+=segto[i+1].x-segto[i].x;
		}
	}
	cout<<res<<endl;
		return 0;
	
}
/**
* In every life we have some trouble
* When you worry you make it double
* Don't worry,be happy.
**/

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值