hdu 6889 数位dp Xor

题意:
在这里插入图片描述
思路:
数位dp,考虑设计状态,第四个条件很好满足,设计一个flag3为状态位就可以了代表是否已经大于w,flag2,flag3代表是否到达枚举x和y的limit,那么第三个条件怎么设计呢,考虑稍微改变一下柿子, x − y < = k   & &   y − x < = k   x-y<=k~ \&\&~y-x<=k~ xy<=k && yx<=k 那么就好办了,考虑x-y+k只有 [ − 1 , 2 ] [-1,2] [1,2]的情况下,由于前面如果推下来<-1那么永远都不能大于,是无效状态,同时2这个状态位也是多余的,有1就够了,因为后面怎么弄都不会超过这个1.

//#pragma GCC target("avx")
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize("Ofast")
// created by myq
#include<iostream>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<climits>
#include<cmath>
#include<cctype>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<set>
#include<map>
#include<sstream>
#include<unordered_map>
#include<unordered_set>
using namespace std;
typedef long long ll;
#define x first
#define y second
typedef pair<int,int> pii;
const int N = 400010;
const int mod=998244353;
inline int read()
{
	int res=0;
	int f=1;
	char c=getchar();
	while(c>'9' ||c<'0')
	{
		if(c=='-')	f=-1;
		c=getchar();
	}
	while(c>='0'&&c<='9')
	{
		res=(res<<3)+(res<<1)+c-'0';
	}
	return res;
 }
ll dp[32][2][2][2][4][4];
int a[32],a1[32];
int b[32],a2[32];
int c[32],k[32];
int d[32],w[32];
int E=1;
ll dfs(int len,int flag1,int flag2,int flag3,int k1,int k2){
	
	if(!len){
		return k1>=0 && k2>=0;
	}
	if(~dp[len][flag1][flag2][flag3][k1+E][k2+E])	return dp[len][flag1][flag2][flag3][k1+E][k2+E];
	ll res=0;
	int up1=flag1?a[len]:1;
	int up2=flag2?b[len]:1;
	for(int i=0;i<=up1;i++)
	{
		for(int j=0;j<=up2;j++){
			if(flag3 && (i^j)&&!w[len])	continue;
			int kk1=min(k1*2+k[len]+j-i,2);
			int kk2=min(k2*2+k[len]+i-j,2);
			if(kk1<=-2 || kk2<=-2)	continue;
			res+=dfs(len-1,flag1&(i==up1),flag2&(j==up2),flag3&((i^j)==w[len]),kk1,kk2);
		}
	}
	
	return dp[len][flag1][flag2][flag3][k1+E][k2+E]=res;
	
}
ll solve(int A,int B,int K,int W){
	memset(dp,-1,sizeof dp);
	for(int i=30;i>=0;i--){
		a[i+1]=A>>i&1; 
		b[i+1]=B>>i&1;
		k[i+1]=K>>i&1;
		w[i+1]=W>>i&1;
	}
	return dfs(31,1,1,1,0,0);
}
int main()
{
	int T;
	cin>>T;
	while(T--){
		int a,b,k,w;
		cin>>a>>b>>k>>w;
		cout<<solve(a,b,k,w)<<endl;
	}
	return 0;

}
/**
* In every life we have some trouble
* When you worry you make it double
* Don't worry,be happy.
**/



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值