EC_FINAL E.flow 贪心 好模型

LINK
题意:
给你一张图,这个图保证1到n的路径长度相同并且不相交,每条边会有个流量,每次操作可以使得一条的流量-1,一条边的流量+1,问最少操作多少次可以满足最大流量
思路:
这个图大概长成这样。
在这里插入图片描述
考场上并没有发现很好的性质,只发现了每条路径的容量取决于 m i n ( ∑ c ) min(\sum c) min(c),然后想着该怎么把大的容量转移给小的,然后。。就做不出来了。后来看了正解,正解是把每条路径按照容量排序,由于我们可以先知道答案的流量,然而如果要流 a n s ans ans的流量,那么一定要满足每条边都要满足至少 a n s ans ans,假设有 k k k条路径,长度为 l e n len len,我们从头往后操作,如果当前的 s u m < a n s sum<ans sum<ans,那么后面一定有大的容量可以分配给它,对于答案的贡献是 a n s − s u m ans-sum anssum否则直接break就行了。
代码

#include<bits/stdc++.h>
using namespace std;
const int N=400010;
#define int long long
int h[N],ne[N],w[N],idx,e[N];
void add(int a,int b,int c){
	e[idx]=b,ne[idx]=h[a],w[idx]=c,h[a]=idx++;
}
//vector<int>v
//void dfs()
vector<int>path[N];
signed main(){
	int n,m;
	int dd=0;
	cin>>n>>m;
	memset(h,-1,sizeof h);
	int sum=0;
	while(m--){
		int a,b,c;
		cin>>a>>b>>c;
		sum+=c;
		add(a,b,c);
		add(b,a,c);
	}
	int ans;
	for(int i=h[1];~i;i=ne[i])
	{
		++dd;
		int x=e[i];
		path[dd].push_back(w[i]);
		int ww;
		int pre=1;
		while(true)
		{
//			cout<<x<<endl;
			if(x==n)
			break;
			for(int d=h[x];~d;d=ne[d])
			{
				if(e[d]==pre)		continue;
				int k=e[d];
				path[dd].push_back(w[d]);
				pre=x;
				x=k;
				break;
			}
		}
		sort(path[dd].begin(),path[dd].end());
		ans=sum/path[dd].size();
	}
//	cout<<ans<<endl;
	int res=0;
	for(int i=0;i<path[dd].size();i++){
		int xsum=0;
		for(int j=1;j<=dd;j++)
			xsum+=path[j][i];
		if(xsum>=ans)
		break;
		else;
		res+=ans-xsum;
	}	
	cout<<res;
	
	
	return 0;
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值