简单选择排序和堆排序

本文详细介绍了两种常见的排序算法——选择排序和堆排序。选择排序通过每次选取最小值与当前位置交换来实现排序,而堆排序则利用堆这种数据结构,通过构建大顶堆或小顶堆进行元素的交换与调整,最终达到排序目的。两种算法的时间复杂度分别为O(n²)和O(nlogn),适用于不同的场景。文中提供了具体的代码实现,帮助读者深入理解这两种排序算法的工作原理。
摘要由CSDN通过智能技术生成

1、简单选择排序

1.1、基本介绍

  • 选择式排序也属于内部排序法,是从预排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。

  • 选择排序(select sorting)也是一种简单的排序方法。

  • 基本思想是:第一次从arr[0]~arr[n-1]中选取最小值,与arr[0]交换,第二次从arr[1]~arr[n-1]中选取最小值,与arr[1]交换,第三次从arr[2]~arr[n-1]中选取最小值,与arr[2]交换,…,第i次从arr[i-1]~arr[n-1]中选取最小值,与arr[i-1]交换,…,第n-1次从arr[n-2]~arr[n-1]中选取最小值,与arr[n-2]交换,总共通过n-1次,得到一个按排序码从小到大排列的有序序列。

1.2、代码实现

//升序排序
//选择排序时间复杂度O(n²)
public class SelectSort {
    public static void main(String[] args) {
        int[] arr = {9,4,2,6,3,7,4,1};
        selectSort(arr);
        System.out.println("排序后");
        System.out.println(Arrays.toString(arr));
    }

    public static void selectSort(int[] arr){

        for (int i = 0; i < arr.length - 1; i++) {
            int minIndex = i;
            int min = arr[i];
            for (int j = i + 1; j < arr.length; j++) {
                if(min > arr[j]){ //说明假定的min并不是最小值;若从大到小排序,将大于号改为小于号
                    min = arr[j];
                    minIndex = j;
                }
            }
            if(minIndex != i){
                arr[minIndex] = arr[i];
                arr[i] = min;
            }
        }
    }
}

2、堆排序

2.1、基本介绍

  • 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。

  • 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;注意:没有要求结点的左孩子的值和右孩子的值的大小关系。

  • 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆

  • 一般升序采用大顶堆,降序采用小顶堆

2.2、基本思想

  • 堆排序的基本思想
    • 将待排序列序构造成一个大顶堆 ==> 数组(顺序存储二叉树)
    • 此时,整个序列的最大值就是堆顶的根节点。
    • 将其与末尾元素进行交换,此时末尾就为最大值。
    • 然后将剩余n-1个元素重新构造成一个堆,这样会得到 n-1 个元素的次小值。如此反复执行,便能得到一个有序序列了。
  • 可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了
  • 堆排序的基本思路
    • 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
    • 将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
    • 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

2.3、堆排序步骤图解说明

  • 要求:一个数组{4,6,8,5,9},要求使用堆排序法,将数组升序排序。

  • 步骤一:构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。

    • 假设给定无序序列结构如下
      在这里插入图片描述

    • 此时从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。

    在这里插入图片描述

    • 找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。

    在这里插入图片描述

    • 这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

    在这里插入图片描述

  • 步骤二:将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

    • 将堆顶元素9和末尾元素4进行交换

    在这里插入图片描述

    • 重新调整结构,使其继续满足堆定义

    在这里插入图片描述

    • 再将堆顶元素8与末尾元素5进行交换,得到第二大元素8

    在这里插入图片描述

    • 后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

    在这里插入图片描述

2.4、代码实现

//堆排序
//要求:使用堆排序法,将数组升序排序(大顶堆)
public class HeapSort {
    public static void main(String[] args) {
        int[] arr = {4, 6, 8, 5, 9};
        System.out.println("堆排序后");
        heapSort(arr);
    }

    //编写一个堆排序的方法
    public static void heapSort(int[] arr) {
        int temp = 0;
        
        //将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
        for (int i = arr.length / 2 - 1; i >= 0; i--) {
            adjustHeap(arr, i, arr.length);
        }

        //将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
        //重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
        for (int j = arr.length - 1; j > 0; j--) {
            //将堆顶元素与末尾元素交换,即将数组的第一个元素和最后一个元素交换
            temp = arr[j];
            arr[j] = arr[0];
            arr[0] = temp;
            adjustHeap(arr, 0, j);
        }
        System.out.println(Arrays.toString(arr));

    }

    //将一个数组(对应二叉树),调整成一个大顶堆

    /**
     * 功能:完成将以i对应的非叶子结点的树调整成大顶堆
     * 举例 int arr[] = {4,6,8,5,9}; =Ii = 1 => adjustHeap =>得到{4,9,8,5,6}
     * 如果我们再次调用adjustHeap传入的是i = 0 => 得到{4,9,8,5, 6} => {9,6,8,5,4}
     *
     * @param arr    带调整的数组
     * @param i      表示非叶子结点在数组中索引
     * @param length 表示对多少个元素进行调整,length是在逐渐的减少(即数组长度或结点个数)
     */
    public static void adjustHeap(int[] arr, int i, int length) {

        int temp = arr[i]; //先取出当前元素的值,保存在临时变量
        //开始调整
        /*说明
            1.k = i * 2 + 1 是 i 结点的左子结点
         */
        for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
            if (k + 1 < length && arr[k] < arr[k + 1]) { //说明左子结点的值小于右子结点的值
                k++; //k 指向右子结点
            }
            if (arr[k] > temp) { //如果子结点大于父结点
                arr[i] = arr[k]; //把较大的值赋给当前结点
                i = k; //!!!i 指向k,继续循环比较
            } else {
                break;
            }
        }
        //当for循环结束后,,已经将以i为父结点的树的最大值,放在了最顶(局部)
        arr[i] = temp; //将temp值放到调整后的位置
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fly-ping

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值