1、简单选择排序
1.1、基本介绍
-
选择式排序也属于内部排序法,是从预排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。
-
选择排序(select sorting)也是一种简单的排序方法。
-
基本思想是:第一次从arr[0]~arr[n-1]中选取最小值,与arr[0]交换,第二次从arr[1]~arr[n-1]中选取最小值,与arr[1]交换,第三次从arr[2]~arr[n-1]中选取最小值,与arr[2]交换,…,第i次从arr[i-1]~arr[n-1]中选取最小值,与arr[i-1]交换,…,第n-1次从arr[n-2]~arr[n-1]中选取最小值,与arr[n-2]交换,总共通过n-1次,得到一个按排序码从小到大排列的有序序列。
1.2、代码实现
//升序排序
//选择排序时间复杂度O(n²)
public class SelectSort {
public static void main(String[] args) {
int[] arr = {9,4,2,6,3,7,4,1};
selectSort(arr);
System.out.println("排序后");
System.out.println(Arrays.toString(arr));
}
public static void selectSort(int[] arr){
for (int i = 0; i < arr.length - 1; i++) {
int minIndex = i;
int min = arr[i];
for (int j = i + 1; j < arr.length; j++) {
if(min > arr[j]){ //说明假定的min并不是最小值;若从大到小排序,将大于号改为小于号
min = arr[j];
minIndex = j;
}
}
if(minIndex != i){
arr[minIndex] = arr[i];
arr[i] = min;
}
}
}
}
2、堆排序
2.1、基本介绍
-
堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
-
堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;注意:没有要求结点的左孩子的值和右孩子的值的大小关系。
-
每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆
-
一般升序采用大顶堆,降序采用小顶堆
2.2、基本思想
- 堆排序的基本思想
- 将待排序列序构造成一个大顶堆 ==> 数组(顺序存储二叉树)
- 此时,整个序列的最大值就是堆顶的根节点。
- 将其与末尾元素进行交换,此时末尾就为最大值。
- 然后将剩余n-1个元素重新构造成一个堆,这样会得到 n-1 个元素的次小值。如此反复执行,便能得到一个有序序列了。
- 可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了
- 堆排序的基本思路
- 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
- 将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
- 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
2.3、堆排序步骤图解说明
-
要求:一个数组{4,6,8,5,9},要求使用堆排序法,将数组升序排序。
-
步骤一:构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。
-
假设给定无序序列结构如下
-
此时从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。
- 找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
- 这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。
-
-
步骤二:将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
- 将堆顶元素9和末尾元素4进行交换
- 重新调整结构,使其继续满足堆定义
- 再将堆顶元素8与末尾元素5进行交换,得到第二大元素8
- 后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
2.4、代码实现
//堆排序
//要求:使用堆排序法,将数组升序排序(大顶堆)
public class HeapSort {
public static void main(String[] args) {
int[] arr = {4, 6, 8, 5, 9};
System.out.println("堆排序后");
heapSort(arr);
}
//编写一个堆排序的方法
public static void heapSort(int[] arr) {
int temp = 0;
//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
for (int i = arr.length / 2 - 1; i >= 0; i--) {
adjustHeap(arr, i, arr.length);
}
//将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
//重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
for (int j = arr.length - 1; j > 0; j--) {
//将堆顶元素与末尾元素交换,即将数组的第一个元素和最后一个元素交换
temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
adjustHeap(arr, 0, j);
}
System.out.println(Arrays.toString(arr));
}
//将一个数组(对应二叉树),调整成一个大顶堆
/**
* 功能:完成将以i对应的非叶子结点的树调整成大顶堆
* 举例 int arr[] = {4,6,8,5,9}; =Ii = 1 => adjustHeap =>得到{4,9,8,5,6}
* 如果我们再次调用adjustHeap传入的是i = 0 => 得到{4,9,8,5, 6} => {9,6,8,5,4}
*
* @param arr 带调整的数组
* @param i 表示非叶子结点在数组中索引
* @param length 表示对多少个元素进行调整,length是在逐渐的减少(即数组长度或结点个数)
*/
public static void adjustHeap(int[] arr, int i, int length) {
int temp = arr[i]; //先取出当前元素的值,保存在临时变量
//开始调整
/*说明
1.k = i * 2 + 1 是 i 结点的左子结点
*/
for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
if (k + 1 < length && arr[k] < arr[k + 1]) { //说明左子结点的值小于右子结点的值
k++; //k 指向右子结点
}
if (arr[k] > temp) { //如果子结点大于父结点
arr[i] = arr[k]; //把较大的值赋给当前结点
i = k; //!!!i 指向k,继续循环比较
} else {
break;
}
}
//当for循环结束后,,已经将以i为父结点的树的最大值,放在了最顶(局部)
arr[i] = temp; //将temp值放到调整后的位置
}
}