深度剖析数据在内存中的存储
本章重点
&1. 数据类型详细介绍
&2. 整形在内存中的存储:原码、反码、补码
&3. 大小端字节序介绍及判断
&5. 数据类型例题
&4. 浮点型在内存中的存储解析
1、数据类型介绍
(1)整型(整型在内存中的存储:一个变量的创建是要在内存中开辟空间的,空间的大小是根据不同的类型而决定的)
char(signed char、unsigned char) 字符数据类型
short(signed short、unsigned short) 短整型
int(signed int、unsigned int) 整型
long(signed long、unsigned long) 长整形
long long 更长的整型
(2)浮点型
float 单精度浮点数
double 双精度浮点数
(3)构造类型
数组类型
结构体类型 struct
枚举类型 enum
联合类型 union
(4)指针类型
int pi;
char pc;
float pf;
void pv;
(6)空类型:
void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型
2、原码、反码、补码
(1)计算机中的有符号数有三种表示方法:原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
三种表示方法各不相同。
原码
直接将二进制按照正负数的形式翻译成二进制就可以。
反码
将原码的符号位不变,其他位依次按位取反就可以得到了。
补码
反码+1就得到补码。正数的原、反、补码都相同。
(2)对于整形来说:数据存放内存中其实存放的是补码。
原因:在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理; 同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
3、大小端字节序介绍及判断
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
例如:
设计一个小程序来判断当前机器的字节序
#include<stdio.h>
int check_sys()
{ int i = 1;
return *(char*)(&i);
}
int main()
{ //int b = 0x11223344;
//占4个字节,大端字节序存储44 33 22 11,小端字节序存储11 22 33 44 //大端存储模式:数据的低位保存在内存的高地址中,数据的高位保存在内存的低地址中
//小段存储模式:数据的低位保存在内存的低地址中,数据的高位保存在内存的高地址中
int ret = check_sys();
if (ret == 1)
{
printf("小端");
}
else
{
printf("大端");
}
return 0;
}
5、数据类型例题
例题1
#include<stdio.h>
int main()
{
char a = -1;
//10000000000000000000000000000001 -1原码
//11111111111111111111111111111111 -1补码
signed char b = -1;
//10000000000000000000000000000001 -1原码
//11111111111111111111111111111111 -1补码
unsigned char c = -1;
//11111111 -1补码
//00000000000000000000000011111111 255 无符号数整型提升前面补0
printf("%a=%d,b=%d,c=%d", a, b, c);//-1,-1,255
return 0;
}
例题2
#include<stdio.h>
int main()
{
char a = -128;
//10000000000000000000000010000000 整型提升-128
//10000000 代表-128
//11111111111111111111111110000000 有符号数整型提升前面补1
printf("%u\n", a); //2的32次方-128 %u打印无符号整数
return 0;
}
例题三
#include<stdio.h>
int main()
{
char a = 128;
//00000000000000000000000010000000 整型提升128
//10000000 代表-128
//11111111111111111111111110000000 有符号数整型提升前面补1
printf("%u\n", a); //2的32次方-128 %u打印无符号整数
return 0;
return 0;
}
例题4
#include<stdio.h>
int main()
{
int i = -20;
//-20原码10000000000000000000000000010100
//-20补码11111111111111111111111111101100
// 10补码00000000000000000000000000001010
//相加补码11111111111111111111111111110110
//相加原码10000000000000000000000000001010 -10
unsigned int j = 10;
printf("%d\n", i + j); //-10
return 0;
}
例题5
//例题5
#include<stdio.h>
#include<Windows.h>
int main()
{
unsigned int i;
for (i = 9; i <= 0; i++)
{
printf("%u\n", i); //i总是大于等于0,死循环,i=-0时被认为是unsigned int类型的2^32-1
Sleep(1000);
}
return 0;
}
例题6
//例6
//a是字符型数组,strlen找的是第一次出现尾零(即值为0)的位置。考虑到a[i]其实是字符型,如果要为0,
//则需要 - 1 - i的低八位要是全0,也就是问题简化成了“寻找当 - 1 - i的结果第一次出现低八位全部为0的情况时,
//i的值”(因为字符数组下标为i时第一次出现了尾零,则字符串长度就是i)。只看低八位的话,此时 - 1相当于255,
//所以i == 255的时候, - 1 - i(255 - 255)的低八位全部都是0,也就是当i为255的时候,a[i]第一次为0,所以a[i]的长度就是255了
#include<stdio.h>
#include<string.h>
int main()
{
char a[1000] = { 0 };
int i = 0;
for (i = 0; i<1000; i++)
{
a[i] = -1 - i;
}
printf("%d", strlen(a));//255
return 0;
}
例题7
//说明:printf在传入参数的时候如果是整形会默认传入四字节,所以a + b的结果是用一个四字节的整数接收的,
//不会越界。而c已经在c = a + b这一步中丢弃了最高位的1,所以只能是300 - 256得到的44了。
//※由于printf是可变参数的函数,所以后面参数的类型是未知的,所以甭管你传入的是什么类型,
//printf只会根据类型的不同将用两种不同的长度存储。其中8字节的只有long long、float和double(注意float会处理成double再传入),
//其他类型都是4字节。所以虽然a + b的类型是char,实际接收时还是用一个四字节整数接收的。
//另外,读取时,%lld、%llx等整型方式和%f、%lf等浮点型方式读8字节,其他读4字节。
#include<stdio.h>
int main()
{
unsigned char a = 200;
unsigned char b = 100;
unsigned char c = 0;
c = a + b;
printf("%d %d", a + b, c);//300 44
return 0;
}
6、浮点型在内存中的存储
常见的浮点数:
3.14159 1E10 浮点数家族包括: float、double、long double 类型。 浮点数表示的范围:flfloat.h中定义。
浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
例1:十进制5.0,二进制位101.1,相当于1.0112^2。S=0,M=1.01,E=2。
例2 float f=5.5f,转为二进制101.1
科学计数法1.0112^2
(-1)^0* 1.011* 2^2
0 10000001 01100000000000000000000
IEEE 754规定: 对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
IEEE 754对有效数字M和指数E,还有一些特别规定。 前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形
式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。
比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。
以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的
取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真
实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E
是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
然后,指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前
加上第一位的1。 比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,
则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位。
则其二进制的表示形式为0 01111110 00000000000000000000000
E全为0
浮点数指数E等于1-127(或1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为
0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
例3:
//浮点数例题
#include<stdio.h>
int main()
{
int n = 9; //整数形式存放
float* p = (float*)&n;
printf("n的值为:%d\n", n);//9
printf("*p的值为:%f\n", *p);//0.000000 浮点数形式取出
//将 0x00000009 拆分,得到第一位符号位s = 0,后面8位的指数 E = 00000000 ,
//最后23位的有效数字M = 000 0000 0000 0000 0000 1001。
// 由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
//V=(-1)^0 ×0.00000000000000000001001×2 ^ (-126) = 1.001×2 ^ (-146)
//显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。
*p = 9.0; //浮点数形式存放
printf("num的值为:%d\n", n);//1091567616 整数形式取出
//浮点数9.0等于二进制的1001.0,即1.001×2 ^ 3。
//9.0 -> 1001.0 ->(-1) ^ 01.0012 ^ 3->s = 0, M = 1.001, E = 3 + 127 = 130
//那么,第一位的符号位s = 0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3 + 127 = 130,即
//10000010。 所以,写成二进制形式,应该是s + E + M,即
// 0 10000010 001 0000 0000 0000 0000 0000
printf("*p的值为:%f\n", *p);//9.000000
return 0;
}