概要
最近练习了一个A/B Test的案例 记录一下详细的情况
提示:import numpy as np import pandas as pd import scipy.stats as stats import statsmodels.stats.api as sms import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns
总体思维导图
在这里插入图片描述
实现细节主要就是和思维导图一样
具体设计试验
- 提出假设
我们希望新页面可以提升2%的转化率,原则上我们应选择单尾检验,准确的说,应该选择右侧单尾检验,因为我们的假设是新页面的转化率要大于旧页面的转化率 - 实验分组
对照组(Controller) 实验组(treatment) 对照某个维度进行试验 - 计算公式 这里的计算公式 分 一个就是样本量的计算公式 一个是比率类指标的计算公式
- 运用工具 自己用的是神策 ,把数据放进去,然后按照规定点就可以了
神策官网
5.数据分析
这里代码比较多,并且文件比较大,所以我传到和鲸平台了,可以点击下面查看
A_Btest案例 代码+思维导图+数据集
也可以查看我自己的gitee仓库: A_Btest地址
小结
学习使用A/B TEST 包括流程、实验设计、一些测试工具、举了具体的一个例子、了解衡量指标的测试公式