矩阵置零【矩阵】

本文讨论了如何在二维矩阵中将特定元素置零的问题,提供了in-place的解决方案,并分析了时间复杂度为O(nm)和空间复杂度同样为O(nm)的过程。通过代码展示了如何在不额外创建新数组的情况下修改原矩阵。
摘要由CSDN通过智能技术生成

Problem: 73. 矩阵置零

思路 & 解题方法

二维数组简单使用。

复杂度

时间复杂度:

添加时间复杂度, 示例: O ( n m ) O(nm) O(nm)

空间复杂度:

添加空间复杂度, 示例: O ( n m ) O(nm) O(nm)

Code

class Solution:
    def setZeroes(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        m = len(matrix)
        n = len(matrix[0])
        raw = []
        cow = []
        for i in range(m):
            for j in range(n):
                if matrix[i][j] == 0:
                    raw.append(i)
                    cow.append(j)
        for r in raw:
            for j in range(n):
                matrix[r][j] = 0
        for c in cow:
            for i in range(m):
                matrix[i][c] = 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alan_Lowe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值