论文大概内容 1、摘要 本文研究了前馈去噪的卷积神经网络,与一般的在特定噪声水平下训练特定模型的现有方法不同,本文中的 DnCNN 模型能够处理具有未知噪声水平的高斯去噪(即盲高斯去噪)问题,利用残差学习和批归一化来加快训练过程并提高去噪性能。通过残差学习的策略,DnCNN隐式地去除了隐藏层中潜在的干净图像。作者根据这一特性,还训练单个的DnCNN模型来对几个一般的图像去噪任务进行处理,如高斯去噪、单图像超分辨率和 JPEG 图像去块,都表现出高效的性能。