《Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising》论文学习

论文大概内容

1、摘要

本文研究了前馈去噪的卷积神经网络,与一般的在特定噪声水平下训练特定模型的现有方法不同,本文中的 DnCNN 模型能够处理具有未知噪声水平的高斯去噪(即盲高斯去噪)问题,利用残差学习批归一化来加快训练过程并提高去噪性能。通过残差学习的策略,DnCNN隐式地去除了隐藏层中潜在的干净图像。作者根据这一特性,还训练单个的DnCNN模型来对几个一般的图像去噪任务进行处理,如高斯去噪单图像超分辨率JPEG 图像去块,都表现出高效的性能。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值