pytorch如何在预训练过的模型上继续训练?

本文介绍了如何使用PyTorch保存和加载模型,并在已有的模型基础上继续训练。主要内容包括:直接加载预训练模型进行续训的方法,以及在训练过程中定期保存模型以防中断的策略。
部署运行你感兴趣的模型镜像

1.场景一:直接训练了模型20次,发现loss还没有收敛,想要继续在20的基础上继续训练
处理方案:

target_model = target_net().to(device)
checkpoint = torch.load('./xxx.pth')
target_model.load_state_dict(checkpoint)

这样就把原来已经训练20次的xxx.pth模型重新加载了。

保存模型的方法:

targeted_model_file_name = './xxx.pth'
torch.save(target_model.state_dict(), targeted_model_file_name)
target_model.eval()

2.场景二:训练过程中,每迭代一定次数就保存一次模型,避免训练中断,以恢复模型

if epoch%20==0
	path='./model' + str(epoch) +'.pth'

参考:PyTorch笔记之模型保存和加载

Pytorch模型保存与加载,并在加载的模型基础上继续训练

保存模型的两种方法:

torch.save(the_model,PATH)
the_model  = torch.load(PATH)
torch.save((the_model.state_dict(),PATH)#以保存训练有素的模型
the_model.load_state_dict(torch.load(PATH))#加载保存的模型。

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值