Weiyaner
码龄6年
关注
提问 私信
  • 博客:508,544
    动态:17
    508,561
    总访问量
  • 150
    原创
  • 1,809,609
    排名
  • 5,741
    粉丝
  • 70
    铁粉

个人简介:希望在搜索,推荐,NLP领域持续学习,持续产出。 《鸡声茅店月,人迹板桥霜》

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:重庆市
  • 加入CSDN时间: 2018-05-28
博客简介:

weiyaner的博客

博客描述:
不断打怪,持续升级
查看详细资料
个人成就
  • 获得386次点赞
  • 内容获得100次评论
  • 获得2,798次收藏
  • 代码片获得7,469次分享
创作历程
  • 1篇
    2023年
  • 59篇
    2022年
  • 85篇
    2021年
  • 4篇
    2020年
  • 6篇
    2019年
成就勋章
TA的专栏
  • 搜索算法
    6篇
  • 机器学习与数据挖掘
    26篇
  • 深度学习
    6篇
  • Linux系统学习+华为云
    6篇
  • 报错处理
    1篇
  • 论文解读
    5篇
  • Pytorch
    2篇
  • MIT Missing Semester2020
    2篇
  • 模型部署
    1篇
  • Anaconda
    2篇
  • In Samsung
    2篇
  • 分布式计算
    1篇
  • Tensorflow
    2篇
  • 推荐系统与机器学习
    13篇
  • 自然语言处理
    20篇
  • 数学理论
    6篇
  • 数据结构及算法
    10篇
  • 可视化
    5篇
  • 数据库
    11篇
  • 有用
    7篇
  • 机器学习项目
    3篇
  • 排版
    2篇
  • Python基础和操作
    24篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    机器学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

本地可以自动发送邮件,阿里云服务器不行

使用qq邮箱的stmp.qq.com来实现定时发送邮件,默认端口是25,在本地尝试了可以发送,部署到阿里云服务器出现网络失败。需要在云服务器的出方向和入方向都开放587端口才行。于是换了465端口,依旧失败。最后尝试587端口,成功发送。
原创
发布博客 2023.03.07 ·
1752 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

关于CVR建模中延迟反馈问题

转化率(CVR)预估是电商搜索、推荐和广告最关键任务之一。商业系统通常需要以在线学习的方式更新模型,以跟上不断变化的数据分布。但是,成交转化通常不会在用户单击商品后立即发生。这可能会导致label不准确,我们称之为延迟反馈问题。也就是说,对于一个点击行为,可能在当时没有出现转化现象,但是在随后的12h,24h小时内发生了转化,那么这个样本数据就会标记为负。通过延迟反馈修订,就是将此类的样本数据标记为正。在以前的研究中,延迟反馈问题是通过长时间等待正例样本来解决的;
原创
发布博客 2022.09.08 ·
2287 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

模型线上线下一致性问题

线下可能很好,但是线上表现并不如意,对于这种线上线下一致性问题,是机器学习模型在上线之后经常遇到的问题。围绕着这个问题,从多个角度来考虑该问题。
原创
发布博客 2022.09.08 ·
2832 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

《LC刷题总结》——动态规划

通过上述知道,s1必然是个整数,所以如果taget+sum是个奇数,则不存在组合,返回0。发现如果遍历到第i、个分隔字符,如果dp[j-len(i)]为真的话,且这部分也在字分隔典中,那么dpj也为真。把a看作背包容量,数组的数字看作价值和重量,如果对于a的背包恰好存在最大价值是a的,则可以构成。对于ij相等,不一定要求i+1,j-1是回文串,而是里面的回文子序列长度+2即可。如果i,j不相等,那么就等于上一位置的状态,也就是i+1,j和i,j-1的最大值。基于此,遍历顺序i要从后往前,j从i到后。...
原创
发布博客 2022.08.31 ·
1019 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

window 睡眠模式下定时执行exe文件/py文件

这里有一个exe可执行文件,我想的是每天早上的七点钟,定时执行一次这个程序。也经历了一些问题才最终得以解决。
原创
发布博客 2022.08.21 ·
3013 阅读 ·
2 点赞 ·
0 评论 ·
27 收藏

《LC刷题总结》——回溯

其中,关于循环体,由于限制的不同,循环的方式也不同。
原创
发布博客 2022.08.14 ·
285 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

《LC刷题总结》——贪心

贪心思路,每更新一次index,都计算一次最大的覆盖范围,这个cover可能没变化,也可能是index+nums[i]的值。看cover是否能到最后一个数字。考虑贪心的思路,可以计算相邻两天买卖的利润,然后取所有的正利润即可。可以无限次的买卖股票,获取的最大利润。同一天可以买卖各一次。如果能实现每一阶段局部最优,就可以拓展到全局,得到最优解。数组中的每个元素代表你在该位置可以跳跃的最大长度。贪心解法没有固定的模板。判断你是否能够到达最后一个下标。...
原创
发布博客 2022.08.08 ·
727 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

《LC刷题总结》—— 二叉树

代码随想录二叉树总结。
原创
发布博客 2022.08.08 ·
307 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

HSDC和独立生成树相关

一组生成树t1;t2;..;如果对于v(G)中的任意两个节点u和v,任意两棵树中u和v之间的路径没有共同的边,也没有共同的内部节点,那么网络G中的Tk就是完全独立生成树(cist)。cist在数据中心网络中有重要的应用,如容错的多节点广播、容错的一对所有广播、可靠的广播、安全的消息分发等。增广立方体Qn是超立方体Qn的一个显著变体,具有可扩展性的重要特性,并被提出作为数据中心网络的底层结构。基于AQn的数据中心网络用AQDNn表示,AQDNn的逻辑图用L-AQDNn表示。在本文中,我们研究如何在L-A。..
原创
发布博客 2022.08.01 ·
568 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

深度学习常用激活函数总结

首先数据的分布绝大多数是非线性的,而一般神经网络的计算是线性的,引入激活函数,是在神经网络中引入非线性,强化网络的学习能力。所以激活函数的最大特点就是非线性。不同的激活函数,根据其特点,应用也不同。Sigmoid和tanh的特点是将输出限制在(0,1)和(-1,1)之间,说明Sigmoid和tanh适合做概率值的处理,例如LSTM中的各种门;而ReLU就不行,因为ReLU无最大值限制,可能会出现很大值。......
原创
发布博客 2022.07.25 ·
1507 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

网页保存为pdf神器(可自定义编辑)—Print Edit WE

网页保存pdf文件。去除网页部分内容保存为pdf。
原创
发布博客 2022.07.20 ·
6523 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

python 通过dict(zip)和{}的方式构造字典

经过测试,字典占用空间和键值对的个数并不是线性的。如果在很大的数据中,就需要考虑占用空间的大小,比如。10000个键值对,占用了7w字节。(应用在离线保存embeddings中)的一一映射关系,将aid作为key,第二列作为value。这样通过建立新的key,list作为value存储。在python中,通常通过。...
原创
发布博客 2022.07.18 ·
3213 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

python生成矩阵为何[[0 for i in range(n)] for j in range(m)]而不能[[0]*n]*m

python生成矩阵,使用[[0]*n]*m,我们会发现,当改变其中某一个元素时,整列数据都会发生改变,而使用[[0 for i in range(n)] for j in range(m)]才可以生成正常的矩阵。这是因为,list是可变元素,而int是不可变元素,对于list存储采用指针,引用型变量,改变矩阵其中某一个元素值,导致所有行的这个位置的元素都会改变。下面具体分析:Python列表和C语言数组不同,并不是存的实在的值,而是存放的只想其他实例的指针。所以也就能够理解 为什么python列表里里面什
原创
发布博客 2022.07.12 ·
5737 阅读 ·
7 点赞 ·
0 评论 ·
25 收藏

【万字长文】多模态预训练模型研究进展

从2018年Bert横空出世以后,以预训练模型为基石的各个领域百花齐放,多模态预训练模型也是在这样一个背景下诞生的,具体大概是从2019年开始涌现的。在传统NLP单模态模型中,表征学习的发展较为完善,但在多模态,由于高质量标注数据集的限制,少样本学习以及零样本学习是研究的重点。基于Transformer结构的多模态预训练模型,通过海量无标注数据进行预训练,然后使用少量有标注数据进行微调即可。通常多模态分为:一般是人类看到是实物,声音甚至味道都是一种模态信息。以下介绍将基于最常用的语言视觉多模态(Langua
原创
发布博客 2022.07.12 ·
2037 阅读 ·
3 点赞 ·
2 评论 ·
15 收藏

df.apply之后,dropna() got an unexpected keyword argument ‘subset‘

在使用df进行:报错:或者是因为 在此之前df经过了apply函数操作,使得df数据不再是dataframe结构,而是变成了Series数据结构。如下:就会报错:原因是在之后,sort_data就是pd.series结构了(至于为什么我也不知道,可能和df数据有关系)所以为了防止这种情况,直接改用map进行df的列值修改。如下:...
原创
发布博客 2022.07.11 ·
2341 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

leetcode295 一道题认识大顶堆和小顶堆

LC295:数据流的中位数简单来说就是计算中位数。这里采用大顶堆和小顶堆来分别存储中位数的两边。堆排序(Heap Sort)是利用堆这种数据结构所设计的一种排序算法。堆排序先按从上到下、从左到右的顺序将待排序列表中的元素构造成一棵完全二叉树,然后对完全二叉树进行调整,使其满足:构建出堆后,将堆顶与堆尾进行交换,然后将堆尾从堆中取出来,取出来的数据就是最大(或最小)的数据。重复构建堆并将堆顶和堆尾进行交换,取出堆尾的数据,直到堆中的数据全部被取出,列表排序完成。堆结构分为大顶堆和小顶堆:大顶堆:每个节点(叶节
原创
发布博客 2022.07.11 ·
2928 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Product1M: Towards Weakly Supervised Instance-Level Product Retrieval via Cross-ModalPretraining论文解读

2021年ICCV《ICCV2021 Product1M_Towards_Weakly_Supervised_Instance-Level_Product_Retrieval_via_Cross-Modal_Pretraining》代码地址: https://github.com/zhanxlin/Product1M.主要研究在弱监督的多模态数据场景下,电商领域的产品检索,论文贡献主要在二:首先对比了两种检索模式,图像级检索和多模态实例级检索。图像层面的检索倾向于返回琐碎的结果,因为它不区分不同的实例,而
原创
发布博客 2022.07.07 ·
926 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

M5Product: Self-harmonized Contrastive Learning for E-commercial Multi-modal Pretraining 论文解读

2022年CVPR《M5Product: Self-harmonized Contrastive Learning for E-commercial Multi-modal Pretraining》论文地址:https://arxiv.org/pdf/2109.04275.pdf代码地址:https://github.com/Xiaodongsuper/SCALE_code本文贡献主要有二:开源了一个大规模的多模态预训练数据集M5Product。该数据集包括5种模式(图像、文本、表格、视频和音频),涵盖
原创
发布博客 2022.07.07 ·
925 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Multi-modal Knowledge Graphs for Recommender Systems论文解读

美团基于多模态知识图谱的推荐系统论文
原创
发布博客 2022.07.06 ·
980 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

美团·阿里关于多模态召回的应用实践

美团。阿里关于多模态召回的应用实践
原创
发布博客 2022.06.30 ·
1219 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏
加载更多