[LeedCode专题]数组

一维数组的内存地址是连续的
二维数组的内存地址 c++连续 Java不连续

移除元素

/**
 * @Author:Sumschol
 * @date: Created in 17:01 22/01/28
 * @Descriptions:
 * 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
 *
 * 不要使用额外的数组空间,你必须仅使用 $O(1)$ 额外空间并原地修改输入数组。
 *
 * 元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
 *
 * 示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。
 *
 * 示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。
 *
 * 你不需要考虑数组中超出新长度后面的元素。
 * @thinking:
 * 快慢指针法
 * 两指针同时向右移动,如果 快指针 = 目标值,慢指针不移动
 *                   如果 快指针 ≠ 目标值 【则用快指针内容覆盖慢指针内容】
 * 下标 <=slow 的元素即为删除目标元素后的数组
 */
public class RemovingElements {
    public static void main(String[] args) {

    }

    public static int removeElement(int[] nums, int val) {
        int fast = 0, slow = 0;
        for(int i = 1; i <= nums.length; i++){
            if(nums[fast] != val){
                nums[slow] = nums[fast];
                slow++;
            }
            fast++;
        }
        return slow;
    }

}


二分搜索

/**
 * @Author:Sumschol
 * @date: Created in 16:38 22/01/28
 * @Descriptions:
 * 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
 *
 * 示例 1:
 *
 * 输入: nums = [-1,0,3,5,9,12], target = 9
 * 输出: 4
 * 解释: 9 出现在 nums 中并且下标为 4
 * 示例 2:
 *
 * 输入: nums = [-1,0,3,5,9,12], target = 2
 * 输出: -1
 * 解释: 2 不存在 nums 中因此返回 -1
 * 提示:
 *
 * 你可以假设 nums 中的所有元素是不重复的。
 * n 将在 [1, 10000]之间。
 * nums 的每个元素都将在 [-9999, 9999]之间。
 * @thinking:
 * 二分法前提:数组为有序数组,同时题目还强调数组中无重复元素
 * 注意循环条件为 left <= right (left = right有意义)
 */
public class BinarySearch {

    public static int search(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        while (left <= right) {
            int mid = left + ((right - left) / 2); //可防止left + right越界
            if(nums[mid] < target){
                left = mid + 1;
            }
            else if(nums[mid] > target){
                right = mid - 1;
            }
            else {
                return mid;
            }
        }
        return -1;
    }
}

/*
 * 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

 

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4
示例 4:

输入: nums = [1,3,5,6], target = 0
输出: 0
示例 5:

输入: nums = [1], target = 0
输出: 0
 

提示:

1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 为无重复元素的升序排列数组
-104 <= target <= 104

 * 
 */
class Solution {
    public int searchInsert(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        while (left <= right) {
            int mid = left + ((right - left) / 2); //可防止left + right越界
            if(nums[mid] < target){
                left = mid + 1;
            }
            else if(nums[mid] > target){
                right = mid - 1;
            }
            else {
                return mid;
            }
        }
        return left;
    }
}

977. 有序数组的平方

/**
 * @Author:Sumschol
 * @date: Created in 20:52 22/01/28
 * @Descriptions:
 * 977. 有序数组的平方
 * 
 * 给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
 *
 * 示例 1: 输入:nums = [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]
 *
 * 示例 2: 输入:nums = [-7,-3,2,3,11] 输出:[4,9,9,49,121]
 * @thinking:
 * 双指针法,从数组两端开始遍历,绝对值大的先进行计算并记入结果数组
 * 时间复杂度为O(n)
 */
public class SortedSquares {
    public static int[] sortedSquares(int[] nums) {
        int[] ans = new int[nums.length];
        int i = nums.length - 1;
        int left = 0;
        int right = nums.length - 1;
        while(left != right){
            if((nums[left] >= 0? nums[left]: -nums[left]) > (nums[right] >= 0? nums[right]: -nums[right])){
                ans[i--] = nums[left] * nums[left];
                left++;
            }
            else{
                ans[i--] = nums[right] * nums[right];
                right--;
            }
        }
        ans[i] = nums[left] * nums[left];
        return ans;
    }
}


209. 长度最小的子数组

/**
 * @Author:Sumschol
 * @date: Created in 21:08 22/01/28
 * @Descriptions:
 * 
 * 给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
 *
 * 示例:
 *
 * 输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
 * @thinking:
 * 滑动窗口:定义两个窗口边界指针,右指针不断右移,当 窗口和值 >= 目标值时,
 * 只要 窗口和值 >= 目标值 就移动左指针(缩小窗口)
 */
public class Test {
    public static void main(String[] args) {
        int[] a = new int[3];
        for (int i = 0; i < 3; i++) {
            a[i] = i + 1;
        }
        minSubArrayLen(5,a);
    }
    public static int minSubArrayLen(int target, int[] nums) {
        int sum = 0;
        int ans = Integer.MAX_VALUE; //便于后续比较判断
        for(int left = 0,right = 0; right < nums.length; right++){
            sum += nums[right]; //进入
            while(sum >= target){
                ans = ans >= right - left + 1? right - left + 1: ans;
                sum -= nums[left++];

            }
        }
        return ans == Integer.MAX_VALUE? 0: ans;
    }
}

59.螺旋矩阵II

/**
 * @Author:Sumschol
 * @date: Created in 11:23 22/01/29
 * @Descriptions:
 * 给定一个正整数 n,生成一个包含 1 到 $n^2$ 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
 *
 * 示例:
 *
 * 输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]
 * @thinking:
 * 本题并不涉及到什么算法,就是模拟过程
 * 坚持循环不变量原则
 */
public class Test {
    public static void main(String[] args) {
        generateMatrix(4);
    }
    public static int[][] generateMatrix(int n) {
        int[][] ans = new int[n][n];
        //起始位置
        int startX = 0, startY = 0;
        //循环次数
        int loop = n / 2;
        //填入数字
        int content = 1;
        //偏移量
        int offSet = 1;
        while(loop-- > 0){
            int i = startX, j = startY;

            //左上 -> 右上
            for(; j <= (n - 1) - offSet; j++){
                ans[startX][j] = content++;
            }
            //右上 -> 右下
            for(; i <= (n - 1) - offSet; i++){
                ans[i][j] = content++;
            }
            //右下 -> 左下
            for(;j >= startY + 1; j--){
                ans[i][j] = content++;
            }
            //左下 -> 左上
            for(;i >= startX + 1; i--){
                ans[i][j] = content++;
            }

            //开始位置
            startX++;
            startY++;
            //偏移量
            offSet += 1;
        }

        if(n % 2 == 1){ //处理中间块
            int mid = n / 2;
            ans[mid][mid] = content++;
        }

        return ans;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值