ACM暑假集训

出自–南昌理工学院ACM集训队
龟速乘
我们通常需要求解形如 a ^ b mod p 的式子,我们通常可以想到用循环乘来解决这个问题,就像这样:

#include<bits/stdc++.h>

using namespace std;

int main()
{
    long long a,ans,b,p;
	cin>>a>>b>>p;
	ans=1;
	for(int i=1;i<=b;i++)
	{
		ans*=a;
		ans%=p;
	}
	cout<<ans<<endl;
    return 0;
}

但是如果b很大时,比如1e7或者1e8,就是很会显得很不够用,于是快速幂诞生了

带上代码后就变成了

//计算 (x^y)%mod
long long fastPower(long long base, long long power,long long mod) 
{
    long long result = 1;
    while (power > 0) 
    {
        if (power & 1) 
        {//此处等价于if(power%2==1)
            result = result * base % mod;
        }
        power >>= 1;//此处等价于power=power/2
        base = (base * base) % mod;
    }
    return result;
}

但是当你的mod取的很大时,快速幂直接乘爆,于是又诞生了一个算法——龟速乘(超级慢的)
ab我们可以看成b个a相加嘛,于是
a
ba+a+a+a+a……+a;
当a为偶数 :a * (b/2)+a * (b/2)
当a为奇数 :a * (b/2)+a * (b/2)+a;
非常像快速幂
上例题

#include<bits/stdc++.h>
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define endl '\n' 
typedef long long ll;
using namespace std;
const int maxn=1e7+7;
ll ans,x,y,z;
ll b,p,k,Pow;
inline ll read()
{
    ll s = 0, w = 1; char ch = getchar();
    while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); }
    while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar();
    return s * w;
}
ll Low_Times(ll b,ll p,ll k)
{
	ll ret=0;
	while(p)
	{
		if(p&1)ret=(ret+b)%k;
		b=(b<<1)%k;
		p>>=1;
	}
	return ret%k;
}
ll Quick_Pow(ll b,ll p,ll k)
{
	ll ret=1;
	b%=k;
	while(p)
	{
		if(p&1)ret=Low_Times(ret,b,k);
		b=Low_Times(b,b,k);
		p>>=1;
	}
	return ret%k;
}
int main()
{
	ll t;
	t=read();
	while(t--)
	{
		cin>>b>>p>>k;
	    Pow=Quick_Pow(b,p,k);
	    cout<<Pow<<endl;
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值