💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
"TS模糊逻辑与最优关系MPPT算法风力涡轮机性能仿真验证"这一主题涉及到风力发电技术中两个关键方面:最大功率点跟踪(Maximum Power Point Tracking, MPPT)算法和模糊逻辑控制,以及通过仿真手段对这些技术在提升风力涡轮机性能方面的效果进行验证。
TS模糊逻辑
TS(Takagi-Sugeno)模糊逻辑是一种基于规则的模糊推理系统,它在控制系统设计中特别有用。与传统的模糊逻辑系统相比,TS模糊逻辑系统的特点在于其输出是通过加权和的形式得到的,而非直接通过隶属度的模糊算子操作。这种方法简化了控制规则的制定,提高了系统的解释性和可设计性,使得它非常适合用于复杂、非线性的控制问题,比如风力涡轮机的最大功率点跟踪控制。
最优关系MPPT算法
最优关系MPPT(Optimal Relationship MPPT)算法是指一类旨在更精确、高效地找到并跟踪风力发电机最大功率点的策略。这类算法通常会利用风速与发电机输出功率之间的复杂非线性关系,通过数学模型或智能算法实时调整发电机的工作状态,确保在不同风速条件下都能实现最大能量转换效率。最优关系MPPT算法的设计目标是快速响应风速变化,减少功率波动,从而提高整个风力发电系统的效率和稳定性。
仿真验证
仿真验证是评估和优化上述控制策略的一种重要方法,它允许研究者在不实际构建和测试物理设备的情况下,通过计算机模拟来预测风力涡轮机在各种条件下的性能表现。这包括使用专业的仿真软件(如MATLAB/Simulink、ANSYS等)建立风力涡轮机及控制系统的数学模型,然后输入不同的风速、风向等环境参数,观察和分析TS模糊逻辑与最优关系MPPT算法如何影响涡轮机的功率输出、效率、稳定性等关键指标。
结论
结合TS模糊逻辑与最优关系MPPT算法的风力涡轮机性能仿真验证,是一个高度综合的研究课题,旨在探索和验证智能化控制策略在提升风能转换效率、增强系统适应性和鲁棒性方面的潜力。通过仿真研究,可以深入理解这些高级控制算法的内在机制,优化设计参数,并为未来风力发电系统的实际部署提供科学依据和技术支持。
📚2 运行结果
%% Inverter dc-ac
Fc = 2e3; %Base frequency of the triangular carrier wave [Hz]
Fs2 = 60; %Base frequency of the power grid [Hz]
ws = 2*pi*Fs2; %Base frequency of the power grid [rad/s]
vdc = 500; %DC bus base voltage [V]
S = 10e3*3/2; %Apparent base system power [VA]
VL = 381.051/2; %Baseline voltage [rms]
Vf = VL/sqrt(3); %Base phase voltage [rms]
vdc_ref = 500; %Desired dc bus voltage [V]
Linv = 0.0133; %Inductance [H]
RLinv = 0.0417; %Linv internal resistance[Ohms]
Cinv = 470e-6; %DC bus capacitor [F]
Ts2 = 1/(4*Fc); %Sampling time [Seg.]
Ts3 = 1/(100*Fc); %PWM sampling time and other non-controller blocks
Vp = 1; %Peak PWM carrier voltage [V]
Kv2 = 500; %Voltage sensor gain
Hv_z = 1/Kv2;
Ki2 = 30; %Current sensor gain
Hi_z = 1/Ki2;
Kidq = 1; %Current ADC gain
Hidq_z = 1/Kidq;
Kvdq = 1; %Voltage ADC gain
Hvdq_z = 1/Kvdq;
KI3 = 0.0217732643899006; %Integral voltage controller gain
KP3 = 7.56435818844027; %Voltage controller proportional gain
KI1 = 0.217806165556525; %Integral current controller gain
KP1 = 29.8808604912875; %Proportional gain of the current controller
%% Power grid
VLngrid = 33000/sqrt(3); %Line voltage to neutral [rms]
Icc = 5000e6; %Short circuit current [Arms]
Fred = Fs2; %Frequency [Hz]
In = 1000e3/(1.73*(110));
Icc_calc = In/(5/100);
%% Sample time of MA-MPPT and Oubella-MPPT
Ts6 = 0.02;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]郭海霞.光伏发电MPPT的模糊逻辑控制及仿真[J].山西农业大学学报(自然科学版),2017,37(11):825-830.
🌈4 Matlab代码、Simulink仿真实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取