💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于BiLSTM-Attention的共享单车租赁预测研究结合了双向长短期记忆网络(BiLSTM)在捕捉时序数据中的双向依赖关系的能力,以及注意力机制(Attention)在关注重要信息方面的特长,旨在更精准地预测共享单车租赁数量。以下是对该研究的详细分析:
一、研究背景与意义
随着共享单车的普及和市场竞争的加剧,准确预测共享单车租赁数量对于共享单车企业优化资源配置、提高运营效率具有重要意义。BiLSTM-Attention模型通过融合多种深度学习技术的优点,能够捕捉影响租赁数量的多种因素及其之间的复杂关系,提高预测的准确性和稳定性。
二、模型构建与原理
1. 数据收集与预处理
- 数据收集:收集共享单车租赁系统的历史数据,包括租赁数量、时间信息(如日期、小时)、天气状况(如温度、湿度、风速等)、地理位置等。
- 数据清洗:去除异常值、缺失值等,确保数据的完整性和准确性。
- 特征工程:根据业务需求和数据特点,提取并转换有用的特征。例如,对分类特征(如天气状况、节假日等)进行one-hot编码,对连续特征(如温度、湿度等)进行归一化处理。
2. BiLSTM-Attention模型构建
- BiLSTM部分:BiLSTM是LSTM(长短期记忆网络)的一种变体,由前向LSTM和后向LSTM组合而成。它能够通过同时训练两个方向的LSTM,捕捉数据中的双向依赖关系,从而更全面地理解数据的时序特性。
- Attention机制:在BiLSTM的输出上引入注意力机制,使得模型能够根据不同时间点的信息对预测结果的重要性进行动态调整。这样,模型可以更加关注对预测结果影响较大的时间段或特征,提高预测的准确性和鲁棒性。
3. 融合与输出
将BiLSTM提取的时序特征、Attention机制的权重进行融合,通过全连接层得到最终的共享单车租赁数量预测值。
三、模型训练与优化
- 损失函数:选择合适的损失函数(如均方误差MSE、平均绝对误差MAE等)来衡量预测结果与实际值之间的差异。
- 优化算法:使用梯度下降法或其变种(如Adam优化器)来优化模型参数,最小化损失函数。
- 超参数调优:通过交叉验证等方法调整BiLSTM的层数、LSTM单元数量、学习率等超参数,以提高模型性能。
- 正则化技术:为防止过拟合,可以采用L1/L2正则化、Dropout等技术。
四、实验结果与讨论
基于BiLSTM-Attention的共享单车租赁预测模型通常能够在训练集和测试集上表现出良好的预测性能。该模型能够捕捉影响租赁数量的多种因素及其之间的复杂关系,并通过注意力机制关注重要信息,从而提高预测的准确性和稳定性。
五、研究应用与展望
1. 应用场景
- 实时预测与调度:将预测模型与实时监控系统相结合,实现共享单车租赁数量的实时预测和动态调度。
- 运营决策支持:为共享单车企业的运营决策提供数据支持,如优化车辆投放策略、调整租金价格等。
- 城市规划:为城市规划者提供共享单车租赁系统的使用情况数据,为制定自行车相关基础设施和政策提供参考。
2. 研究展望
- 多源数据融合:引入更多数据源(如交通流量、人口迁移、社交媒体数据等),提高预测的准确性和全面性。
- 模型融合:结合其他深度学习模型(如Transformer等)的优点,构建混合模型以提高预测性能。
- 可解释性研究:加强对BiLSTM-Attention模型预测结果的可解释性研究,提高模型的透明度和可信度,便于企业和用户理解和接受预测结果。
综上所述,基于BiLSTM-Attention的共享单车租赁预测研究通过融合多种深度学习技术的优点,实现了对共享单车租赁数量的精准预测。未来随着技术的不断发展和数据的不断积累,该领域的研究将更加深入和广泛。
📚2 运行结果
部分代码:
def evaluate_forecasts(Ytest, predicted_data, n_out): # 定义一个函数来评估预测的性能。 mse_dic = [] rmse_dic = [] mae_dic = [] mape_dic = [] r2_dic = [] # 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.
[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.
[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.
[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取