基于遗传算法的配电网重构研究(Matlab代码实现)

👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于遗传算法的配电网重构研究

一、配电网重构的基本概念与目标

主要目标函数:

二、遗传算法在配电网重构中的应用现状

1. 算法优势与适应性

2. 典型研究成果

3. 局限性

三、遗传算法的改进策略

1. 编码与解码优化

2. 混合算法设计

3. 多目标处理技术

4. 实际约束集成

四、典型研究案例

五、未来研究方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

优化配电网运行作为电力系统运行管理的一个重要组成部分,也是供电企业的工作目标。在配网优化的各项措施中,由于配电网重构能在不增加投资的前提下,只需通过调节配网中开关的开合状态,就能达到降低线损、均衡负荷以消除过载、提高供电电压质量和提高供电可靠性等目的,因此它是配电网一项最为经济的优化措施。本文基于遗传算法的配电网重构,有效的降低配电网网损,提高电能质量。

基于遗传算法的配电网重构研究

一、配电网重构的基本概念与目标

配电网重构(Distribution Network Reconfiguration, DNR)是通过调整开关状态改变网络拓扑结构,以实现优化运行的技术。其核心目标是在满足辐射状拓扑、电压约束、支路容量等条件下,通过数学优化模型提升系统性能。

主要目标函数:
  1. 降低有功网损
    以最小化系统总功率损耗为目标,公式为:

  2. 多时段能耗优化
    考虑时间维度(如日、周负荷曲线),以阶梯式离散化方法最小化总能量损耗。

  3. 经济性综合优化
    在高比例新能源场景下,需平衡网损成本、弃风弃光成本及开关操作费用,实现社会利益最大化。


二、遗传算法在配电网重构中的应用现状
1. 算法优势与适应性

遗传算法(GA)因其全局搜索能力、对离散变量的适应性(如开关状态编码)及多目标处理潜力,成为DNR主流方法之一。其核心流程包括染色体编码、适应度计算、选择/交叉/变异操作。

2. 典型研究成果
  • 标准测试系统验证
    在IEEE 33/69/136节点系统中,增强型GA相比传统方法收敛速度更快,且能保持辐射状拓扑。
  • 混合算法开发
    结合模拟退火(SA)的GSA算法,利用SA的全局优化与GA的局部搜索,处理速度提升30%以上。
  • 实际工程案例
    尼泊尔Katunje馈线重构中,GA优化联络开关配置,使有功损耗降低21%,投资成本减少15%。
3. 局限性
  • 早熟收敛问题
    传统GA易陷入局部最优,需通过改进编码或引入多样性策略解决。
  • 计算复杂度
    大规模配电网中染色体长度增加,需采用动态编码或并行计算优化。

三、遗传算法的改进策略
1. 编码与解码优化
  • 动态回路编码
    根据拓扑变化实时调整染色体结构,避免不可行解,提升搜索效率。
  • 自然数环网编码
    以节点度判断拓扑可行性,克服二进制编码的“维数灾”问题。
2. 混合算法设计
  • GA与蚁群算法融合
    利用蚁群信息素引导GA初始种群,加速收敛并提高全局最优概率。
  • 自适应规则
    动态调整交叉/变异概率,平衡探索与开发能力(如小生境技术)。
3. 多目标处理技术
  • Pareto前沿优化
    通过非支配排序保留多目标最优解集,结合权重法或模糊决策选择最终方案。
  • 经济-可靠性权衡
    在目标函数中引入停电损失成本权重,实现综合优化。
4. 实际约束集成
  • 开关操作成本
    在适应度函数中加入开关切换次数限制,降低实际执行复杂度。
  • 新能源不确定性
    考虑分布式电源(DG)出力波动,采用鲁棒优化或场景分析法增强模型适应性。

四、典型研究案例
  1. IEEE 33节点系统重构

    • 目标:最小化网损与弃风弃光成本。
    • 方法:结合需求侧响应(DR)和智能软开关(SOP),采用混合整数二阶锥规划求解。
    • 结果:网损降低18%,新能源消纳率提升12%。
  2. Katunje馈线重构(尼泊尔)

    • 场景:11 kV城市配电网,43个节点。
    • 优化变量:联络开关配置(限制5个以内)。
    • 工具:MATLAB与Digsilent协同仿真,GA计算耗时较传统方法减少40%。
  3. 多目标主动配电网重构

    • 模型:融合功率损耗、电压偏移、稳定裕度指标。
    • 算法:“门当户对”交叉策略,提升种群多样性。
    • 成效:电压合格率提高9%,稳定性提升15%。

五、未来研究方向
  1. 高比例新能源场景
    研究风光储协同优化下的动态重构策略,解决间歇性电源带来的不确定性。
  2. 人工智能融合
    结合深度学习预测负荷变化,或强化学习优化实时重构决策。
  3. 边缘计算应用
    开发轻量化GA算法,支持分布式边缘节点快速响应拓扑变化。
  4. 多能源耦合系统
    扩展至电-热-气综合能源网络,实现跨能源形式的协同重构。

结论

遗传算法在配电网重构中展现了强大的适应性与扩展性,尤其在多目标优化和混合算法设计中表现突出。未来需进一步结合新型电力系统需求,突破算法效率与复杂约束的平衡难题,推动配电网向智能化、低碳化方向演进。

📚2 运行结果

 部分代码:

function [U,ploss]=powerflow()
n=69;
b=68;
Sb=10;       %基准功率
Ub=12.66;    %基准电压
Zb=Ub^2/Sb;  %基准阻抗
s1=13; s2=69; s3=55; s4=18; s5=61;
Q1=0; Q2=0; Q3=0;
%输入系统参数
Z=[1, 1, 2,0.005/Zb+0.0012i/Zb,0
    2, 2, 3,0.005/Zb+0.0012i/Zb,0
    3, 3, 4,0.0015/Zb+0.0036i/Zb,0
    4, 4, 5,0.0251/Zb+0.02941i/Zb,0
    5, 5, 6,0.366/Zb+0.1869i/Zb,0.0026/Sb+0.0022i/Sb
    6, 6, 7,0.3811/Zb+0.1964i/Zb,0.0404/Sb+0.03i/Sb
    7, 7, 8,0.0922/Zb+0.047i/Zb,0.075/Sb+0.054i/Sb
    8, 8, 9,0.0493/Zb+0.0251i/Zb,0.030/Sb+0.022i/Sb
    9, 9, 10,0.8090/Zb+0.2707i/Zb,0.028/Sb+0.019i/Sb
    10, 10,11,0.1872/Zb+0.0691i/Zb,0.145/Sb+0.104i/Sb
    11,11,12,0.7114/Zb+0.2351i/Zb,0.145/Sb+0.104i/Sb
    12,12,13,1.03/Zb+0.34i/Zb,0.008/Sb+0.0055i/Sb
    13,13,14,1.044/Zb+0.345i/Zb,0.008/Sb+0.0055i/Sb
    14,14,15,1.058/Zb+0.3496i/Zb,0
    15,15,16,0.1966/Zb+0.065i/Zb,0.0455/Sb+0.030i/Sb
    16,16,17,0.3744/Zb+0.1238i/Zb,0.060/Sb+0.035i/Sb
    17,17,18,0.0047/Zb+0.0016i/Zb,0.060/Sb+0.035i/Sb
    18,18,19,0.3276/Zb+0.1083i/Zb,0
    19,19,20,0.2106/Zb+0.0696i/Zb,0.001/Sb+0.0006i/Sb
    20,20,21,0.3416/Zb+0.1129i/Zb,0.114/Sb+0.081i/Sb
    21,21,22,0.014/Zb+0.0046i/Zb,0.0053/Sb+0.0035i/Sb
    22, 22,23,0.1591/Zb+0.0526i/Zb,0
    23,23,24,0.3463/Zb+0.11451i/Zb,0.028/Sb+0.020i/Sb
    24,24,25,0.7488/Zb+0.2745i/Zb,0
    25, 25,26,0.3089/Zb+0.1021i/Zb,0.014/Sb+0.010i/Sb
    26,26,27,0.1732/Zb+0.5728i/Zb,0.014/Sb+0.010i/Sb
    27,3,20,0.0044/Zb+0.0108i/Zb,0.026/Sb+0.0186i/Sb
    28,28,29,0.064/Zb+0.1565i/Zb,0.026/Sb+0.0186i/Sb
    29,29,30,0.3978/Zb+0.1315i/Zb,0
    30,30,31,0.0702/Zb+0.0232i/Zb,0
    31,32,33,0.3510/Zb+0.1160i/Zb,0
    32,32,33,0.8390/Zb+0.2816i/Zb,0.014/Sb+0.010i/Sb
    33, 33,34,1.7080/Zb+0.5645i/Zb,0.0194/Sb+0.014i/Sb
    34, 34,35,1.4740/Zb+0.4673i/Zb,0.0060/Sb+0.004i/Sb
    35,3,59,0.0044/Zb+0.0108i/Zb,0.0260/Sb+0.01855i/Sb
    36,59,60,0.064/Zb+0.15650i/Zb,0.0260/Sb+0.01855i/Sb
    37,60,61,0.10530/Zb+0.123i/Zb,0
    38,61,62,0.0304/Zb+0.355i/Zb,0.024/Sb+0.017i/Sb
    39,62,63,0.018/Zb+0.021i/Zb,0.024/Sb+0.017i/Sb
    40,63,64,0.7283/Zb+0.8509i/Zb,0.0012/Sb+0.001i/Sb
    41,64,65,0.310/Zb+0.3623i/Zb,0
    42,65,66,0.041/Zb+0.0478i/Zb,0.006/Sb+0.0043i/Sb
    43,66,67,0.0092/Zb+0.0116i/Zb,0
    44,67,68,0.1089/Zb+0.1373i/Zb,0.03922/Sb+0.0263i/Sb
    45,68,69,0.0009/Zb+0.0012i/Zb,0.03922/Sb+0.0263i/Sb
    46,4,36,0.0034/Zb+0.0034i/Zb,0
    47,36,37,0.0851/Zb+0.2033i/Zb,0.079/Sb+0.0564i/Sb
    48,37,38,0.2898/Zb+0.7091i/Zb,0.3847/Sb+0.2745i/Sb
    49,38,39,0.0822/Zb+0.2011i/Zb,0.3847/Sb+0.2745i/Sb
    50,8,40,0.0928/Zb+0.0473i/Zb,0.0405/Sb+0.0283i/Sb
    51,40,41,0.3391/Zb+0.1114i/Zb,0.0036/Sb+0.0027i/Sb
    52,9,42,0.1740/Zb+0.0886i/Zb,0.00435/Sb+0.0035i/Sb
    53,42,43,0.2030/Zb+0.1034i/Zb,0.0264/Sb+0.019i/Sb
    54,43,44,0.2842/Zb+0.1447i/Zb,0.024/Sb+0.0172i/Sb
    55,44,45,0.2813/Zb+0.1433i/Zb,0
    56,45,46,1.59/Zb+0.5337i/Zb,0
    57,46,47,0.7837/Zb+0.2630i/Zb,0
    58,47,48,0.3042/Zb+0.1006i/Zb,0.1/Sb+0.072i/Sb
    59,48,49,0.3861/Zb+0.1172i/Zb,0
    60,49,50,0.5075/Zb+0.2585i/Zb,1.244/Sb+0.888i/Sb
    61,50,51,0.0974/Zb+0.0496i/Zb,0.032/Sb+0.023i/Sb
    62,51,52,0.1450/Zb+0.0738i/Zb,0
    63,52,53,0.7105/Zb+0.3619i/Zb,0.227/Sb+0.162i/Sb
    64,53,54,1.041/Zb+0.5302i/Zb,0.059/Sb+0.042i/Sb
    65,11,55,0.2012/Zb+0.0611i/Zb,0.018/Sb+0.013i/Sb
    66,55,56,0.0047/Zb+0.0014i/Zb,0.018/Sb+0.013i/Sb
    67,12,57,0.7394/Zb+0.2444i/Zb,0.028/Sb+0.020i/Sb
    68,57,58,0.0047/Zb+0.0016i/Zb,0.028/Sb+0.020i/Sb
    69,11,66,0.5/Zb+0.5/Zb,0.018/Sb+0.013i/Sb
    70,13,20,0.5/Zb+0.5/Zb,0.114/Sb+0.081i/Sb
    71,15,69,1/Zb+1/Zb,0.018/Sb+0.013i/Sb
    72,27,54,1/Zb+1/Zb,0.024/Sb+0.0172i/Sb
    73,39,48,2/Zb+2/Zb,0.3847/Sb+0.2745i/Sb
    ]; 

for i=1:73
    if Z(i,1)==s1
        Z(i,5)=0;
    end
end
for i=1:73
    if Z(i,1)==s2
        Z(i,5)=0;
    end
end
for i=1:73
    if Z(i,1)==s3
        Z(i,5)=0;
    end
end
for i=1:73
    if Z(i,1)==s4
        Z(i,5)=0;
    end
end
for i=1:73
    if Z(i,1)==s5
        Z(i,5)=0;
    end
end

%计算潮流
v=ones(1,n);   %初始化节点电压
k=0;
L1=0;
while  k<10&&L1<1     %收敛条件
    v_before=v;
    %计算节点注入电流,b=32为系统支路数
    I=zeros(b,1);   %生成一个b行1列的零矩阵
    for h=1:b
        I(h)=conj(0.5*Z(h,5)/v(1,h+1)); %求节点注入电流,conj为求共轭
    end
    J=zeros(b,1);
    J=J+I;    %支路电流,J矩阵中存储的是各节点注入电流,J有32行1列
    for h=b-1:-1:1
        nn=Z(h,3);   %取系统中末端节点编号
        for j=b:-1:1
            if Z(j,2)==nn    %说明他们之间首末端点是相连的
                J(h)=J(h)+J(j);
            end
        end
    end
   %回推节点电压
    for h=1:b
        m=Z(h,2);mm=Z(h,3);
        v(1,mm+1)=v(1,m+1)-Z(h,4)*J(h);
    end
    %收敛条件
    for h=1:b
        dat_v(h)=abs(v(h))-abs(v_before(h));
    end
    if max(abs(dat_v))<1.0e-4
        L1=1;    %不能用dat_v(i)就指最后的元素第i个
    end
    k=k+1;
end

%计算网损
ws=zeros(b,1);
for i=1:1:b;
    ws(i,1)=J(i,1)*conj(J(i,1))*real(Z(i,4))*Sb;
end
ploss=zeros(n,1);
ploss=sum(ws);

U=zeros(n,1);
for i=1:n;
    U(i)=real(v(i));
end
ploss
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。(内容仅供参考,具体以运行结果为准)

[1]柯朝晖,彭雪华,徐敏.改进的遗传算法在配电网重构中的应用[J].科技广场,2016(01):42-45.DOI:10.13838/j.cnki.kjgc.2016.01.010.

[2]杨烈. 基于遗传算法的多目标配电网重构研究与应用[D].华北电力大学,2013.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值