💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
文献来源,然后复现之:
摘要:工业4.0时代,焊接技术作为一种最基本的工件加工技术,被广泛应用于各种工业生产。焊接质量直接影响焊接产品的使用寿命,从而影响工业生产活动的效率。基于灰度共生矩阵(GLCM)对X-射线焊接缺陷图像进行特征提取,分析X-射线焊接缺陷的分类特点,构建SVM多类分类器,分析对比不同核函数对分类精度的影响。基于RBF核函数的SVM分类器能够对焊接缺陷进行良好的识别分类,总体分类精度达到了92.6%,为焊接缺陷的检测识别提供了一种简便的方法。
关键词:
图像的特征提取是图像的识别和分类、基于内容的图像检索、图像数据挖掘等研究内容的基础性工作,其中图像的纹理特征对描述图像内容具有重要意义,纹理特征提取已成为图像领域研究的一个重要方法。本文探讨了基于灰度共生矩阵(GLCM)的纹理特征提取方法,分析了共生矩阵各个构造参数对构造共生矩阵的影响。实现基于灰度共生矩阵( GLCM)的特定图像的纹理特征提取。
1.1 纹理
纹理特征是一种重要的视觉线索,是图像中普遍存在、而又难以描述的特征。纹理作
为物体表面的一种基本属性,广泛存在自然界中,是描述和识别物体的一种极为重要的特
征。纹理分析技术一直是计算机视觉、图像处理、图像分析、图像检索等的重要应用。纹
理分析的研究内容主要包括:纹理分类和分割、纹理合成、纹理检索和由纹理恢复形状等。
这些研究内容的一个最基本的问题是纹理特征提取。
1.2 纹理特征
图像的纹理特征描述了在图像中反复出现的局部规律和像素排列规则,反映了宏观意
义上灰度变化的一些规律,图像可以看成是不同纹理区域的组合,纹理是对局部区域像素
之间关系的一种度量。纹理特征可用于定量描述图像中的信息。
1.3 纹理特征提取方法
纹理特征提取的主要方法有统计方法、模型方法、信号处理方法和结构方法。本文所
用的是统计方法;统计方法是基于像元及其邻域的灰度属性,研究纹理区域中的统计特性。
实践证明,灰度共生矩阵在统计方法中具有很旺盛的生命,用该方法提取的纹理特征具有
很好的鉴别能力。
1.4 灰度共生矩阵
共生矩阵用两个位置像素的联合概率密度来定义,它不仅反映亮度的分布特性,也反
映具有同样亮度或接近亮度的像素之间的位置分布特性,是有关图像亮度变化的二阶统计
特征。它是定义一组纹理特征的基础。由于纹理是由灰度分布在空间位置上反复出现而形
成的,因而在图像空间中相隔某距离的两像素之间会存在一定的灰度关系,即图像中灰度
的空间相关特性。灰度共生矩阵就是一种通过研究灰度的空间相关特性来描述纹理的常用
方法。灰度直方图是对图像上单个像素具有某个灰度进行统计的结果,而灰度共生矩阵是
对图像上保持某距离的两像素分别具有某灰度的状况进行统计得到的。
设计总结
(1) 计算灰度共生矩阵时要考虑三个变量,图像灰度级 L 方向 和距离 d 。
(2) 对于灰度级 L 的选取,灰度级决定了灰度共生矩阵的计算规模,降低灰度级可以提 高计算速度和减少存储空间需求,且适当降低灰度级还可以减少噪声对图像的影响,但过小的灰度级会破坏有用纹理的成分。
(3) 对于距离 d 的选择,共生矩阵在精细纹理中随距离而快速变化,而在粗糙纹理中随距离则变化缓慢。一般而言,对于平滑纹理用较大的距离,对于粗糙纹理用较小的距离会 取得较好的效果。对于方向 的选择,一般有四种取值 (0 ,45 ,90 ,135 ) 0 0 0 0 通过不 可以考察不同的纹理,不同 生成的共生矩阵中包含不同的纹理信息。一般而言,在考虑方向时,往往是分别计算四个方向灰度共生矩阵所确定的纹理特征值,然后以各方向特征值的均值作为最终纹理分量。
(4) 利用 SVM 进行分类时,样本的选取和核函数的选取是分类器是否优良的一个重要影响因素,因此,对于一个优良的分类器,应该充分考虑各种影响因素后,选择一个最优的方案才能使待分类目标得到更好的分类。
📚2 运行结果
部分代码:
%**************************************************************************
% 图像检索——纹理特征
%基于共生矩阵纹理特征提取,d=1,θ=0°,45°,90°,135°共四个矩阵
%所用图像灰度级均为256
%参考《基于颜色空间和纹理特征的图像检索》
%function : T=Texture(Image)
%Image : 输入图像数据
%T : 返回八维纹理特征行向量
%**************************************************************************
% function T = Texture(Image)
Gray = imread('me.jpg');
[M,N,O] = size(Gray);
M = 128;
N = 128;
%--------------------------------------------------------------------------
%1.将各颜色分量转化为灰度
%--------------------------------------------------------------------------
% Gray = double(0.3*Image(:,:,1)+0.59*Image(:,:,2)+0.11*Image(:,:,3));
%--------------------------------------------------------------------------
%2.为了减少计算量,对原始图像灰度级压缩,将Gray量化成16级
%--------------------------------------------------------------------------
for i = 1:M
for j = 1:N
for n = 1:256/16
if (n-1)*16<=Gray(i,j)&&Gray(i,j)<=(n-1)*16+15
Gray(i,j) = n-1;
end
end
end
end
%--------------------------------------------------------------------------
%3.计算四个共生矩阵P,取距离为1,角度分别为0,45,90,135
%--------------------------------------------------------------------------
P = zeros(16,16,4);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]陈滔,张庆国,刘澳.基于灰度共生矩阵的图形纹理检测及焊接缺陷的SVM分类实现[J].洛阳理工学院学报(自然科学版),2022,32(01):53-61+67.
🌈4 Matlab代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取