基于 MATLAB 的电力系统动态分析研究【IEEE9、IEEE68系节点】

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、IEEE 9节点系统与IEEE 68节点系统的基本结构及参数

1. IEEE 9节点系统

2. IEEE 68节点系统

二、MATLAB在电力系统动态分析中的工具箱及方法

1. 核心工具箱

2. 动态分析方法

三、基于MATLAB的建模与仿真步骤

1. IEEE 9节点系统建模示例

2. IEEE 68节点系统建模要点

四、动态分析研究案例

1. 暂态稳定性研究

2. 电压稳定性与新能源接入

3. 算法对比与优化

五、结论与展望

📚2 运行结果

2.1 IEEE9节点

2.2 IEEE68节点 

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

本文介绍了为电力系统动态分析开发的基于 MATLAB 的程序。可以获得时域仿真、系统线性化、模态分析、参与因子分析和可视化、控制器的优化放置、反馈信号选择、频率响应分析和控制设计。除了解决电力系统问题外,该软件包还提供模型在时域和状态空间中的符号和矢量化表示。该软件包充分利用了 MATLAB 强大的求解器的优势,用于求解非刚性和刚性问题。显式和隐式技术都用于求解微分代数方程 (DAE)。假设同步电机配备了励磁器、涡轮和稳定器。负载可以建模为电压相关负载和独立负载。本文使用的测试系统是IEEE 9节点和68节点系统,以及德克萨斯州的2007节点合成电源系统。不同类型的干扰应用于系统,包括发电机侧和网络侧干扰。

以下是基于MATLAB的电力系统动态分析研究文档,涵盖IEEE 9节点和IEEE 68节点系统的建模、仿真及动态分析研究。内容整合了多篇文献的核心信息,并结合MATLAB工具链的应用方法。


一、IEEE 9节点系统与IEEE 68节点系统的基本结构及参数

1. IEEE 9节点系统

  • 拓扑结构
    IEEE 9节点系统是电力系统研究的经典基准模型,由3台发电机(G1、G2、G3)、3个负荷节点(PQ节点)、3台变压器和9个总线节点组成。其中:

    • 节点类型:包括平衡节点(松弛节点)、PV节点(电压控制节点)和PQ节点(负荷节点)。
    • 电压等级:发电机母线电压为13.8 kV~18 kV,变压器升压至230 kV。
    • 典型参数:基准容量为100 MVA,线路和变压器参数以标幺值表示。
  • 典型应用场景

    • 潮流计算:采用牛顿-拉弗森法或高斯-赛德尔法求解节点电压、功率分布。
    • 暂态稳定性分析:研究三相故障后发电机的转子角度振荡及临界清除时间。
    • 电压稳定性:通过PV和QV曲线分析系统在极限负荷下的稳定性。

2. IEEE 68节点系统

  • 拓扑结构
    该系统规模更大,包含68个节点、16台发电机,其中:
    • 发电机模型:15台采用圆转子同步机模型和四型交流励磁器,1台作为电压源提供频率参考。
    • 方程复杂度:系统状态方程包含535个变量(92.1%为微分变量),雅可比矩阵非零元素仅占0.75%。
    • 动态特性:适用于大规模系统扰动后的机电暂态仿真及动态相量分析。

二、MATLAB在电力系统动态分析中的工具箱及方法

1. 核心工具箱

  • Simulink/Simscape Electrical
    提供电力系统元件库(发电机、变压器、负荷等),支持图形化建模和时域仿真。

    • 应用示例:搭建IEEE 9节点系统模型,模拟三相故障后转子角度动态响应。
  • Power System Toolbox (PST)
    提供潮流计算、小信号稳定性分析、暂态稳定性分析等功能。

    • 特色功能:支持自定义控制器(如PSS、SVC)的集成与优化。
  • PSAT
    开源工具箱,支持动态时域仿真和模态分析,适合含新能源的电力系统研究。

  • Matpower
    专注于潮流计算和最优潮流问题,支持大规模系统(如IEEE 68节点)的高效求解。

2. 动态分析方法

  • 时域仿真
    通过求解微分代数方程(DAEs),模拟系统在故障或扰动下的动态行为。

    • 案例:在IEEE 68节点系统中施加三相短路故障,记录发电机频率和电压恢复过程。
  • 模态分析
    计算系统特征值,识别主导振荡模式及参与因子。

    • 应用场景:分析IEEE 9节点系统中低频振荡的阻尼特性。
  • 控制器设计
    结合神经模糊控制器或传统PID,优化系统稳定性(如添加STATCOM改善电压稳定性)。


三、基于MATLAB的建模与仿真步骤

1. IEEE 9节点系统建模示例

  1. 数据导入

    • 从标准数据表(表1-表3)导入节点参数、线路阻抗及变压器变比。
    % 示例:定义基准容量和节点电压
    baseMVA = 100;
    busdata = [1 1 0 0 0 0 1.04 0 230 1;
               2 2 0 0 0 0 1.025 0 18 1;
               ...]; % 节点参数表
    
  2. Simulink模型搭建

    • 使用Simscape Electrical模块构建发电机、变压器和负荷的矢量模型。
    • 设置初始条件(如发电机端电压VG1=1.04 pu)。
  3. 仿真配置

    • 选择ODE求解器(如ode23tb处理刚性方程),设置仿真时间步长(如0.01秒)。
    • 添加扰动(如5-7号线路在1秒时发生三相故障,持续0.1秒)。
  4. 结果分析

    • 绘制发电机转子角度曲线,判断临界清除时间(如1.033秒时角度差达106.487度)。
    • 计算线路功率损耗(牛顿-拉弗森法比高斯-赛德尔法精度更高)。

2. IEEE 68节点系统建模要点

  • 动态相量法(DP)
    采用可变步长算法加速仿真,比传统EMT方法快100倍以上。
  • 大规模系统优化
    使用Matpower进行最优潮流计算,结合并行计算提升效率。

四、动态分析研究案例

1. 暂态稳定性研究

  • IEEE 9节点系统

    • 故障位置影响:近发电机故障导致转子角度双峰振荡,需16秒恢复稳定。
    • 控制策略:添加DSTATCOM或动态电压恢复器(DVR)可缩短恢复时间。
  • IEEE 68节点系统

    • 扰动响应:不同故障位置激发的动态模式差异显著,需针对性设计阻尼控制器。

2. 电压稳定性与新能源接入

  • 静态无功补偿(SVC)
    • 在IEEE 9节点系统中,SVC可将电压波动控制在±5%以内。
  • 新能源场站调频
    • 基于动态模式分解(DMD)估计虚拟惯量,优化风电场在IEEE 68节点中的频率响应。

3. 算法对比与优化

  • 潮流计算:牛顿-拉弗森法收敛速度更快,但高斯-赛德尔法内存占用更低。
  • 动态相量法:在IEEE 68节点中,DP程序CPU时间仅为EMT仿真的1%。

五、结论与展望

  • MATLAB工具优势:通过Simulink和专用工具箱(如PSAT、Matpower),可高效完成从小型(IEEE 9)到大型(IEEE 68)系统的动态分析。
  • 未来方向:新能源高渗透场景下的动态特性研究、基于AI的控制器设计(如自适应神经模糊控制)。

📚2 运行结果

2.1 IEEE9节点

2.2 IEEE68节点 

部分代码:

%%%----------------------------% LL-1--------------------------------------
T1_LL1 = realp('T1_LL1',1);                     % T1 coefficient (name and initial value)
T2_LL1 = realp('T2_LL1',0.1);                   % T2 coefficient
T1_LL1.Minimum = 0.1;   T1_LL1.Maximum = 1;     % Set min-max values for T1
T2_LL1.Minimum = 0.01;  T2_LL1.Maximum = 0.1;   % Set min-max values for T2
T1_LL1.Free = true;
T2_LL1.Free = true;
LL1=tf([T1_LL1 1],[T2_LL1 1]);
%%%----------------------------% LL-2--------------------------------------
T3_LL2 = realp('T3_LL2',1);                     % T3 coefficient
T4_LL2 = realp('T4_LL2',0.1);                   % T4 coefficient
T3_LL2.Minimum = 0.1;   T3_LL2.Maximum = 1;     % Set min-max values for T3
T4_LL2.Minimum = 0.01;  T4_LL2.Maximum = 0.1;   % Set min-max values for T4
T3_LL2.Free = true;
T4_LL2.Free = true;
LL2=tf([T3_LL2 1],[T4_LL2 1]);
%%%--------------------------Washout---------------------------------------
Tw = realp('Tw',1);                             % Tw coefficient
Tw.Minimum = 1;   Tw.Maximum = 10;
Tw.Free = true;
WO=tf([Tw 0],[Tw 1]);
%%%--------------------------Gain------------------------------------------
Ck = realp('Ck',1);          
Ck.Minimum = 1;  Ck.Maximum = 50;
Kg=tf(Ck);
%%%==========================System tuning=================================
CL0 = feedback(LL1*LL2*Ck*G,1, -1);             % Closed-loop TF (with PSS)
CL0.InputName = 'ws';
CL0.OutputName = 'w';
Req1 = TuningGoal.Poles(0,0.2,Inf);             % [min decay, min damping ratio, max freq].
options = systuneOptions('Display','iter');
[CL,fSoft] = systune(CL0,Req1, options);
sys2=CL.Blocks; 
OptimizedParam=[sys2.T1_LL1 sys2.T2_LL1  sys2.T3_LL2 sys2.T4_LL2 sys2.Ck]; OptimizedParam=double(OptimizedParam);
figure (1) 
viewGoal(Req1,CL); xlim([-50 1]); hold on;      % Plot the results with the desired goal to check if it is satisfactory
%=================================END======================================
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈4 Matlab代码、数据、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值