💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
1.1 基于 P2P 交易的多微网电能共享架构
1.2 含碳捕集和电转气的微电网模型
基于非对称纳什谈判的多微网电能共享运行优化策略研究
一、非对称纳什谈判理论的基本原理
非对称纳什谈判理论是博弈论中解决多方利益分配问题的核心工具,其核心在于通过权重分配反映参与方的议价能力差异,并寻求帕累托最优解。该理论在电力系统中的应用体现为:
- 谈判权重动态调整:根据参与主体的贡献度(如电能富余量、储能容量等)动态分配权重,例如通过破产理论计算分歧点,结合公平性与效率原则确定跨区域谈判权重。
- 双层博弈结构:在微网联盟中,上层为效益最大化问题,下层为收益分配问题,通过交替方向乘子法(ADMM)实现分布式求解,保护隐私的同时提升效率。
- 溢出效应与稳定性:研究表明,非对称谈判可避免“角落解”现象(即一方获得全部溢价),通过非线性映射函数量化贡献,增强联盟稳定性。
二、多微网系统的定义与运行特点
多微网系统由多个互联的微电网组成,其核心特征包括:
- 结构灵活性:支持交流、直流或混合组网,通过公共耦合点实现功率交互,可脱离主电网独立运行。
- 技术优势:
- 提高可再生能源渗透率,减少弃风弃光现象。
- 通过能量互济提升供电可靠性,例如在配电网故障时提供恢复服务。
- 控制架构:
- 集中式分层控制:依赖能量管理系统(EMS)进行全局调度,但对通信能力要求高。
- 分布式多代理控制:通过智能体(Agent)自主决策,降低对中心节点的依赖。
三、利益冲突与协调机制
多微网系统中各主体的利益冲突主要源于:
- 资源禀赋差异:不同微网的能源结构(如光伏/风电占比)、负荷需求及储能容量差异导致利益诉求不一致。
- 交易模式复杂:电能交互涉及定价权、过网费分配等问题,传统均分收益机制难以体现贡献差异。
协调机制创新:
- 非对称纳什谈判模型:将合作收益分配与贡献度挂钩,例如引入电转气(P2G)和碳捕集设备(CCS)的微网可获得更高权重。
- 中介交易模式:通过第三方协调欺诈行为,避免因信息不对称导致联盟破裂。
- 动态谈判系数:根据微网在联盟中的边际贡献(如削峰填谷效果)调整分配比例。
四、现有电能共享策略的局限性
传统优化策略存在以下不足:
- 非对称性忽略:多数研究假设微网同质化,未考虑源-荷特性差异导致的利益失衡。
- 隐私保护不足:集中式优化需共享全部运行数据,存在信息泄露风险。
- 低碳目标缺失:早期模型未整合碳配额交易机制,难以适应碳中和政策要求。
五、非对称纳什谈判与优化策略结合的可行性
- 理论可行性:
- 纳什谈判解的帕累托最优性可确保联盟整体效益最大化。
- 非对称权重机制能兼容多类型微网(如产消者、纯消费者)的差异化需求。
- 技术可行性:
- 分布式求解:ADMM算法支持隐私保护下的协同优化,计算效率满足实时调度需求。
- 低碳调度集成:通过碳捕集设备与电转气技术,实现碳排放成本内部化。
- 实证验证:
- 仿真表明,该策略可使微网联盟收益提升15%-20%,碳排放减少12%-18%。
- 案例显示,在3微网系统中,电能交互量波动降低30%,且无主体退出联盟。
六、总结与展望
非对称纳什谈判理论为多微网电能共享提供了兼顾效率与公平的解决方案。未来研究可聚焦于:
- 多能流耦合:整合热、气等多种能源形式,扩展谈判维度。
- 区块链技术:利用智能合约实现去中心化交易,进一步提升透明度。
- 动态权重算法:结合机器学习预测微网贡献度,实现自适应谈判。
通过上述创新,多微网系统有望成为能源互联网中高效、低碳的核心单元。
📚2 运行结果
2.1 算法收敛性分析——子问题
原文图:
复现结果图:
2.3 多微网 P2P 电能交易优化结果分析
原文图:
复现结果图:
部分代码:
%微网2(MG2)的分布式优化迭代模型
%% 决策变量初始化
L_e=sdpvar(1,24); %微网经过需求响应后实际的电负荷
L_h=sdpvar(1,24); %微网经过需求响应后实际的热负荷
P_e_cut=sdpvar(1,24); %微网的可削减电负荷
P_e_tran=sdpvar(1,24); %微网的可转移电负荷
P_h_DR=sdpvar(1,24); %微网的可削减热负荷
E_bat=sdpvar(1,24); %微网中的储电设备的储电余量
P_batc=sdpvar(1,24); %储电设备的充电功率
P_batd=sdpvar(1,24); %储电设备的放电功率
U_abs=binvar(1,24); %储电设备的放电状态位,取1时为放电,0为未放电
U_relea=binvar(1,24); %储电设备的充电状态位,取1时为充电,0为未充电
P_e_pv=sdpvar(1,24); %风力的实际出力值
P_e_GT=sdpvar(1,24); %燃气轮机的发电功率
P_h_GT=sdpvar(1,24); %燃气轮机的产热功率
P_h_GB=sdpvar(1,24); %余热锅炉的产热功率
P_buy=sdpvar(1,24); %微网向外电网的购买的电功率
P_sell=sdpvar(1,24); %微网向外电网的售出的电功率
Gas_GT=sdpvar(1,24); %GT的耗气量
Gas_GB=sdpvar(1,24); %GB的耗气量
Gas=sdpvar(1,24); %系统的总耗气量
%P2G+CCS
P_e1=sdpvar(1,24); %CHP的供电功率
P_e2=sdpvar(1,24); %CHP的供给P2G的功率
P_e3=sdpvar(1,24); %CHP的供给CCS的功率
P_h=sdpvar(1,24); %CHP的输出热功率
P_gs=sdpvar(1,24); %P2G的产气功率
C_cc=sdpvar(1,24); %CCS的碳捕集量/P2G所用的二氧化碳量
%% 导入电/热负荷和电网购电电价
L_e0=[1774,1450,1296,1219,1095,1265,1481,1944,2484,2083,1651,1188,1080,1126,1033,1033,941,1450,2283,3148,3904,3719,2746,2453]*1.5;
L_h0=[1610,1594,1594,1610,1633,1633,1286,1201,1117,1109,1648,1656,1664,1140,1124,1109,1286,1309,1302,1325,1479,1502,1340,1332]*1.5;
Predict_pv=[0,0,0,0,0,0,967,1287,1583,1833,1918,1942,2004,1957,1669,1076,655,0,0,0,0,0,0,0];
pri_e=[0.40*ones(1,7),0.75*ones(1,4),1.20*ones(1,3),0.75*ones(1,4),1.20*ones(1,4),0.40*ones(1,2)];
grid_sw=[0.2*ones(1,24)];
%% 约束条件
C=[];
%微网的电/热负荷需求响应部分
for t=1:24
C=[C,
L_e(t)==L_e0(t)+P_e_cut(t)+P_e_tran(t), %微网的电负荷功率平衡约束
L_h(t)==L_h0(t)-P_h_DR(t), %微网的热负荷功率平衡约束
-0.15*L_e0(t)<=P_e_cut(t)<=0, %微网的可削减电功率上下限约束
-0.15*L_e0(t)<=P_e_tran(t)<=0.15*L_e0(t), %微网的可转移电功率上下限约束
0<=P_h_DR(t)<=0.2*L_h0(t), %微网的可削减热功率上下限约束
];
end
C=[C,sum(P_e_tran)==0,]; %转移的电负荷总量为0约束
%微网的储电设备约束部分
%储能电站荷电状态连续性约束
C=[C,E_bat(1)==800+0.95*P_batc(1)-P_batd(1)/0.96,]; %1时段约束
for t=2:24
C=[C,E_bat(t)==E_bat(t-1)+0.95*P_batc(t)-P_batd(t)/0.96,]; %储电设备容量变化约束
end
%储能容量大小约束
for t=1:24
C=[C,500<=E_bat(t)<=1800,]; %储电量上下限约束
end
%始末状态守恒
C=[C,E_bat(24)==800,];
%储能电站的充放电功率约束,Big-M法进行线性化处理
M=800; %这里的M是个很大的数
for t=1:24
C=[C,
0<=P_batc(t)<=500,
0<=P_batc(t)<=U_abs(t)*M,
0<=P_batd(t)<=600,
0<=P_batd(t)<=U_relea(t)*M,
U_abs(t)+U_relea(t)<=1,
];
end
%带P2G和CCS的CHP运行约束
C=[C,
0-P_e2-P_e3<=P_e1<=3000-P_e2-P_e3, %CHP的供电功率约束
0<=P_e2<=300, %P2G设备的耗电功率约束
0<=P_e3<=600, %CCS设备的耗电功率约束
0<=P_e1<=2000, %CHP的供电功率上下限约束,公式(11)
0<=P_e1, %CHP的供电功率非负性约束
max((0-0.15*P_h-P_e2-P_e3),(0.85*(P_h)-P_e2-P_e3))<=P_e1<=3000-0.20*P_h-P_e2-P_e3, %CHP的热电耦合约束 式(13)
max((0-0.15*P_h),(0.85*(P_h-50)-300-600))<=P_e1<=3000-0.20*P_h-0-0, %考虑P2G和CCS后的CHP的热电耦合约束 式(15)
(0.55/(1+0.5*1.02))*max((0-0.15*P_h-P_e1),(0.85*(P_h-50)-P_e1))<=P_gs<=(0.55/(1+0.5*1.02))*(3000-0.20*P_h-P_e1), %产气功率上下限约束 式(17)
-800<=(P_e1(2:24)+P_e2(2:24)+P_e3(2:24))-(P_e1(1:23)+P_e2(1:23)+P_e3(1:23))<=800, %CHP的爬坡约束
P_gs==0.55*P_e2, %P2G产气功率与耗电量约束 式(2)
C_cc==1.02*P_e2, %P2G运行所需要的二氧化碳量与电功率约束 式(3)
P_e3==0.55*C_cc, %CCS的耗电量与碳捕集量约束 式(4)
];
%CCS的最大碳捕集量
C=[C,0<=C_cc<=0.55*(P_e1+P_e2+P_e3+0.15*P_h),]; %此式为全体的碳排放量,最大捕集量不会超过最大排放量
%CHP机组以及GB等设备运行约束
for t=1:24
C=[C,
0<=P_h_GB(t)<=500, %余热锅炉产热功率上下限约束
0<=P_e_pv(t)<=Predict_pv(t), %风力发电上下限约束
];
end
%微网的热/电负荷平衡约束
for t=1:24
C=[C,
P_e1(t)+P_e_pv(t)+P_buy(t)+P_batd(t)==P_batc(t)+L_e(t)+P_sell(t),
P_h(t)+P_h_GB(t)==L_h(t),
];
end
%变量非负性等约束
for t=1:24
C=[C,
P_buy(t)>=0,
0<=P_sell(t)<=2000,
];
end
%
for t=1:24
C=[C,
P_e1(t)+P_e2(t)+P_e3(t)==0.35*Gas_GT(t), %GT耗气量约束
P_h_GB(t)==0.9*Gas_GB(t), %GB耗气量约束
Gas(t)==Gas_GT(t)+Gas_GB(t)-P_gs(t),%总耗气量约束
];
end
%碳交易部分
E_co2=0.55*sum(P_e1+P_e2+P_e3+0.15*P_h)+0.65*sum(P_h_GB)-sum(C_cc);
E_0=0.424*sum(P_e1+P_e2+P_e3+P_e_pv+P_h_GB);
C4=0.75*(E_co2-E_0); %系统的碳交易成本
%CHP的总运行费用
C3=0.01329*sum(P_e1+P_e2+P_e3)+0.022*sum(P_e2)+0.022*sum(P_e3); %CHP的总运行费用
%% 目标函数
Obj=sum(pri_e.*P_buy)+3.5*sum(Gas)/9.7+0.01*sum(abs(P_e_tran))-0.03*sum(P_e_cut)+0.01*sum(P_batc+P_batd)+C3+C4...
+0.016*sum(P_h_DR);
%% 求解器配置与求解
ops=sdpsettings('solver','cplex','verbose',0,'usex0',0);
ops.cplex.mip.tolerances.mipgap=1e-6;
result=solvesdp(C,Obj,ops);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]吴锦领,楼平,管敏渊等.基于非对称纳什谈判的多微网电能共享运行优化策略[J].电网技术,2022,46(07):2711-2723.DOI:10.13335/j.1000-3673.pst.2021.1590.