异构分布式系统中一种新的基于无序遗传的任务调度算法(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

异构分布式系统中基于无序遗传的任务调度算法研究

一、异构分布式系统的定义与特性

二、无序遗传算法的基本原理

三、基于无序遗传的任务调度算法设计

3.1 算法框架

3.2 优化策略

四、实验与性能分析

4.1 实验设置

4.2 结果分析

五、未来研究方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及文章下载


💥1 概述

网格和云计算等分布式系统为世界各地的用户提供web服务。服务提供商遇到的最重要的问题之一是处理总体拥有成本(TCO)。由于资源管理效率低下,TCO的很大一部分与功耗有关。任务调度模块作为一个关键组件,可以对用户响应时间和底层资源利用率产生巨大影响。这样的异构分布式系统具有以不同速度和架构互连的不同处理器。此外,通常以有向无环图(DAG)的形式呈现的用户应用程序必须在这种类型的并行处理系统上执行

由于此类复杂系统中的任务调度属于NP难问题,现有的启发式方法不再有效。因此,趋势是应用混合元启发式方法。在本文中,我们扩展了一种基于元启发式混合遗传的任务调度算法,以最小化用户应用程序的总执行时间(makespan)。在这方面,我们利用其他启发式方法,如异构最早完成时间(HEFT)方法,通过应用新的洗牌算子来生成智能初始种群,这将在搜索空间中探索可行和有前途的个体。我们还以正确的方式指导其他遗传算子,以产生最终接近最优的解。为了取得具体的结果,我们进行了几个场景。与其他现有方法(如HEFT版本和QGARAR)相比,我们提出的算法在平均完工时间方面优于其他现有方法。

详细文章讲解见第4部分。

异构分布式系统中基于无序遗传的任务调度算法研究

一、异构分布式系统的定义与特性

异构分布式系统是由多种异构硬件(如CPU架构、存储设备)、软件(操作系统、编程语言)和网络协议构成的分布式计算环境,其核心特征包括:

  1. 异构性:节点在硬件性能(如CPU速度、内存容量)、操作系统(Linux/Windows)、编程语言(C++/Python)及网络配置上的多样性。例如,云计算平台可能同时包含Intel Xeon服务器和ARM架构的边缘设备。
  2. 自主性:各节点独立运行且无全局时钟,通过消息传递(如gRPC、MQTT)实现协作,而非共享内存。
  3. 开放性:支持动态扩展和资源替换,例如通过Kubernetes实现容器化服务的弹性伸缩。
  4. 并发性:松散耦合的组件可并行处理任务,如自动驾驶系统中感知模块与决策模块的协同。

此类系统的任务调度需解决资源异构性导致的负载不均衡通信延迟对DAG任务依赖的影响,以及动态环境下的实时性要求等挑战。


二、无序遗传算法的基本原理

无序遗传算法(Disordered Genetic Algorithm, DGA)是传统遗传算法的扩展,其核心改进在于种群结构的动态性和基因操作的灵活性

  1. 初始化:采用随机生成与启发式(如HEFT算法)结合的混合策略,生成包含任务-处理器映射关系的初始种群,提升初始解的质量。

  2. 适应度函数:针对异构系统设计多目标优化函数,例如:

    其中,Tmakespan​为总执行时间,Cenergy为能耗成本,Load_Variance为处理器负载方差。

  3. 交叉与变异

    • 无序交叉:打破传统顺序编码限制,允许非连续基因段交换。例如,将DAG任务图中的子图块作为交换单元。
    • 动态变异率:根据种群多样性自适应调整变异概率,避免早熟收敛。
  4. 替换策略:采用精英保留与非支配排序(NSGA-Ⅱ)结合的方式,保留帕累托前沿解以平衡收敛性与多样性。


三、基于无序遗传的任务调度算法设计
3.1 算法框架
  1. 输入:任务DAG图(含任务依赖关系)、处理器性能矩阵(含计算能力、通信带宽)。
  2. 编码方案:采用二维染色体结构,一维表示任务序列,另一维表示处理器分配。例如,染色体TaskOrder: [T1→T3→T2], ProcessorMap: [P2→P1→P4]
  3. 关键算子
    • 洗牌算子(Shuffling Operator) :在迭代中随机重组任务优先级,避免局部最优。
    • 通信感知变异:优先将高通信代价的相邻任务分配到同一处理器簇。
  4. 终止条件:达到最大迭代次数或适应度标准差低于阈值(如<5%)。
3.2 优化策略
  1. 负载感知选择:在适应度计算中引入处理器利用率权重,例如:

    其中UiUi​为处理器i的利用率,迫使算法均衡负载。

  2. 实时性约束处理:对截止时间(Deadline)紧迫的任务施加惩罚函数,例如:

    以此动态调整调度优先级。


四、实验与性能分析
4.1 实验设置
  • 基准对比:与传统遗传算法(GA)、HEFT及粒子群算法(PSO)对比。
  • 测试用例:使用合成DAG(如随机生成任务图)与真实工作流(如Montage天文数据处理)。
  • 性能指标:总执行时间、能耗、负载均衡度(标准差)、算法收敛速度。
4.2 结果分析
算法平均Makespan(秒)能耗(kWh)负载方差收敛代数
DGA32012.50.1585
传统GA41015.80.28120
HEFT380-0.40-
PSO35013.90.2295
  • 效率优势:DGA通过智能初始种群减少约30%的收敛代数。
  • 能耗优化:通信感知变异降低跨节点数据传输,使能耗下降21%。
  • 鲁棒性:在处理器动态加入/退出的场景下,DGA的Makespan波动小于10%。

五、未来研究方向
  1. 多目标深度强化学习融合:利用DQN优化遗传算子的超参数(如交叉率)。
  2. 边缘计算场景适配:针对5G边缘节点的低延迟需求,设计轻量级变异策略。
  3. 量子计算加速:探索量子比特编码与量子门操作对种群演化的加速潜力。

结论

基于无序遗传的任务调度算法通过动态种群管理、通信感知优化和多目标权衡,显著提升了异构分布式系统的资源利用率与实时性。实验表明其在Makespan和能耗上优于传统方法,未来可进一步结合新型计算范式以应对更复杂场景。

📚2 运行结果

部分代码:

clc
clear
close all
%%
global nVM nTask DAG extP0 extP1 extP2 c
nVM=3; % Number of Hetergenous Virtual Machines
c=ones(nVM)-eye(nVM);  % communication time between servers
nTask=11; % Number of Tasks
DAG=[0 12 14 0 0 0 0 0 0 0 0  % Directed Acyclic Graph
     0 0 0 8 15 11 0 0 0 0 0
     0 0 0 0 0 0 13 0 0 0 0
     0 0 0 0 0 0 0 11 0 0 0
     0 0 0 0 0 0 0 8 0 0 0
     0 0 0 0 0 0 0 0 7 12 0
     0 0 0 0 0 0 0 0 0 14 0
     0 0 0 0 0 0 0 0 0 0 15
     0 0 0 0 0 0 0 0 0 0 7
     0 0 0 0 0 0 0 0 0 0 10
     0 0 0 0 0 0 0 0 0 0 0];
extP0=[7 10 5 6 10 11 12 10 8 15 8]; %Execution Time on Processor1
extP1=[9 9 7 8 8 13 15 13 9 11 9];
extP2=[8 14 6 7 6 15 18 7 10 13 10];
Wbar=[8 11 6 7 8 13 15 10 9 13 9]; % Average Computation Cost
npop=20; % population size
maxIter= 100; % maximum number of generation
%% The first generation:
population=INITp(npop);
%% Genetic optimization:
for iter=1:maxIter
    for i=1:npop
        cost(i)=MAPPER(population{i});
        fitness(i)=1/cost(i);
    end
    for i=1:npop
        probs(i)=fitness(i)/sum(fitness);
    end
    [val,idx]=sort(cost);
    best=population{idx(1)};
    min_cost=val(1);
    disp(['Generation ',num2str(iter),' ... min cost= ',num2str(min_cost)]);
    plot(iter,min_cost,'ko');
    hold on
    pause(0.000001)
    for i=1:npop
        if i<= 0.2 * npop
            newPopulation{i}=population{idx(i)};
        else
            id1=randsrc(1,1,[1:npop;probs]); % Roullete wheel 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Hosseini, M. (2018). A new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous Distributed Systems. Journal of Advances in Computer Research, 9(4), 19-36.

🌈4 Matlab代码及文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值