温控负荷的需求响应潜力评估及其协同优化管理研究(Matlab代码实现)

👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

温控负荷的需求响应潜力评估及其协同优化管理研究

一、温控负荷的定义与特性

二、温控负荷需求响应潜力评估

1. 评估维度

2. 关键指标

3. 评估方法

4. 影响因素

三、协同优化管理策略

1. 分层分区柔性聚合

2. 多时间尺度优化模型

3. 混合控制策略

4. 多主体协同博弈

四、典型案例与应用

五、挑战与展望

六、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

温控负荷的应用场景与参与需求响应的效果有着密切联系。以空调负荷为例,居民用户、商业用户与工业用户之间的空调应用场景,空调功率、能效比等参数区别很大,在需求响应的实际应用中应加以区分。本节将根据冷负荷概算指标I81]分居民、商业、工业对典型的空调负荷应用场景进行分析。
针对于标准使用情况下空调负荷的参考值,可得表2-2:


 

表2-2中,显冷负荷表示空调区域内空气由较高的温度降到舒适的空调温度所需消耗的冷量功率;潜冷负荷表示空调区域内为抵消较高湿度的空气发生冷凝转变为较低湿度的空气放出的冷凝潜热所消耗的冷量功率;全冷负荷为显冷负荷与潜冷负荷的总和。
由上表可得,居民用户、商业用户以及工业用户的典型负荷有其各自的特点。显冷负荷与潜冷负荷对用户所在房间面积以及房间内的结构参数、人流情况等因素有关。一般来说,显冷负荷总体看来,工业用户的全冷负荷最大,商业用户次之,居民用户最小。
根据以上分析,居民、商业、工业用户场景下的空调负荷聚合模型外界参数分布如表2-3所示。

 2009 National Housing Transportation Survey (NHTS)提供了样本家庭的出行时间及出
 行习惯。通过实测数据仿真可以得到用户侧资源较为真实的聚合特性。从NHTS数据库中抽取1000组空调负荷的数据在激励信号作用下参与响应,每台空调额定功率设为2kW。典型日的空调负荷开启停趋势如下图所示,图中纵轴标幺值为1000台空调负荷全部同时满负荷工作时的总功率2MW:
 

本节将比较不同控制温度(0.2°C-0.6C),不同外温(37°℃-39C),不同调控时间(高峰段时间14:00与低谷段时间6:00)条件下的1000户居民用户空调聚合功率需求侧响应,得到灵活负荷在激励信号条件下的响应不确定性区间。

温控负荷的需求响应潜力评估及其协同优化管理研究

一、温控负荷的定义与特性

温控负荷(Thermostatically Controlled Loads, TCLs)指通过恒温器调节温度的设备,主要包括空调、电热水器、冷库制冷系统等,其核心功能是为建筑提供冷/热量的动态平衡。在公共楼宇中,温控负荷占比可达总负荷的40%以上,尤其是空调系统,是夏季电网瞬时负荷尖峰的主要诱因[[1]-[3]]。其特性包括:

  1. 热惯性:设备运行具有储能效应,可通过短暂停启实现功率调节而不显著影响用户体验。
  2. 可预测性:运行状态与温度设定值、环境参数(如室外温度)高度相关。
  3. 集群效应:大量分散的温控负荷聚合后,可形成类似虚拟储能的可调资源。

二、温控负荷需求响应潜力评估
1. 评估维度
  • 理论潜力:基于设备最大可调节功率,假设所有设备同时参与响应。例如,1000台空调(单台2kW)的总理论潜力为2MW。
  • 技术潜力:考虑设备运行约束(如温度死区、启停频率限制)后的实际可调容量。研究表明,温控负荷的功率限制在最大负荷的90%以下可确保系统稳定性。
  • 实际可用潜力:进一步叠加用户接受度、经济激励和政策支持等社会因素。例如,空调温度在人体舒适范围内(±1°C)调节时,用户参与意愿较高。
2. 关键指标
  • 响应率:实际响应电量与目标值的比例,反映用户或设备的执行能力。
  • 响应速度:从信号下发到负荷调整的时间,温控负荷通常可在秒级至分钟级响应。
  • 调节时长:单次响应可持续时间,空调负荷通常为30分钟至2小时。
3. 评估方法
  • 数据驱动法:利用历史用电数据与机器学习模型(如深度子领域自适应网络)预测潜力。
  • 参数辨识法:通过设备运行参数(如热阻、热容)建立动态模型,量化响应能力。
  • 博弈论与聚类分析:基于用户用电行为分群,结合电价弹性系数计算响应电量。
4. 影响因素
  • 环境参数:室外温度升高1°C,空调负荷响应潜力下降约5%。
  • 设备异构性:中央空调与分散式空调的调节特性差异显著,需分类建模。
  • 用户行为:商业楼宇的空调负荷响应潜力高于居民用户,因后者对舒适度更敏感。

三、协同优化管理策略
1. 分层分区柔性聚合
  • 物理聚合:将同一区域的温控负荷整合为虚拟储能单元,通过负荷聚合商集中调控。
  • 逻辑聚合:按响应特性(如启停速度、储能容量)分类,匹配不同调控场景(如调峰、调频)。
2. 多时间尺度优化模型
  • 短期优化:基于模型预测控制(MPC)实时调整温度设定值,平衡电网需求与用户舒适度。
  • 中长期规划:结合成本-效益分析,优化设备投资(如蓄冷空调)与电价激励方案。
3. 混合控制策略
  • 直接控制:强制启停设备,适用于紧急调频(如频率偏差>0.1Hz)。
  • 间接激励:通过分时电价或补贴引导用户自主调节,降低设备磨损。
  • 智能算法:小脑模型神经网络(CMAC)优化功率分配,结合模糊评价指标提升用户满意度。
4. 多主体协同博弈
  • 虚拟电厂(VPP)集成:将温控负荷与光伏、储能等资源协同调度,提高可再生能源消纳。
  • 利益分配机制:改进Shapley值法分配收益,激励负荷聚合商、用户和电网三方合作。

四、典型案例与应用
  1. 国内案例
    • 苏州虚拟电厂:聚合空调与电动汽车负荷,通过分时电价削减峰谷差15%。
    • 云南文山电解铝厂:秒级负荷柔性控制终端实现98%响应精度,降低调峰成本。
  2. 国际实践
    • 美国PJM市场:空调负荷参与频率调节市场,单次响应收益达0.5美元/kW。
    • 欧洲Flex4Grid项目:跨区域温控负荷集群提供备用容量,提升电网韧性。

五、挑战与展望
  1. 技术瓶颈
    • 数据互通:需突破跨平台数据共享壁垒,构建统一的负荷调控协议。
    • 模型泛化性:现有模型多针对特定场景,需开发通用性更强的优化框架。
  2. 政策与市场
    • 激励机制设计:探索基于区块链的透明结算模式,增强用户信任。
    • 标准体系:制定温控负荷参与辅助服务的准入标准与性能评价规范。
  3. 未来方向
    • 数字孪生技术:构建负荷-电网双向交互的虚拟仿真平台。
    • 碳约束优化:将碳排放成本纳入调度模型,助力“双碳”目标。

六、结论

温控负荷作为需求侧资源的核心组成部分,其潜力评估与协同优化管理是构建新型电力系统的关键。通过分层聚合、智能控制与多主体博弈,可实现电网安全、经济性与用户体验的多目标均衡。未来需进一步融合数字技术、完善市场机制,释放温控负荷在能源转型中的最大价值。

📚2 运行结果

调节温度对响应潜力的影响
在外温30℃条件下,分别将空调负荷群的空调运行温度调整0.2°℃、0.4°C、0.6°℃,聚合功率变化曲线如下:

 复现之:

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]谢敦见. 温控负荷的需求响应潜力评估及其协同优化管理研究[D].浙江大学,2019.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值