👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
考虑实时市场联动的电力零售商鲁棒定价策略研究
一、实时市场联动机制及其对电力零售商的挑战
实时电力市场(Real-Time Market, RTM)是电力现货市场的重要组成部分,其核心特征包括:
- 高频交易与滚动出清:以15分钟为周期滚动更新未来15分钟至1小时的节点电价与发用电计划。通过安全约束经济调度(SCED)算法,实时市场可快速响应超短期负荷预测变化,优化全网资源调度。
- 价格波动性与不确定性:实时电价基于系统边际成本形成,受供需失衡、网络阻塞、可再生能源出力波动等因素影响,呈现剧烈波动性。例如,在电网阻塞时,节点边际电价(LMP)差异显著,进一步加剧价格不确定性。
- 风险对冲功能:实时市场为零售商提供了调整日前购电偏差的渠道,但其高波动性也要求零售商需通过动态定价策略对冲风险。
对电力零售商的挑战:
- 双重不确定性:用电需求与实时价格的双重波动导致收益风险。
- 竞争压力与用户粘性:频繁调整零售价格可能引发用户流失,需平衡价格灵活性与用户稳定性。
- 技术复杂度:实时市场联动要求零售商具备快速数据处理与优化决策能力,例如对15分钟级价格信号的实时响应。
二、电力零售商的运营模式与定价机制
电力零售商的盈利模式以批零价差为核心,其定价机制需与批发市场形成有效衔接:
-
定价模式分类:
- 固定服务费模式:零售电价=中长期合同均价+固定服务费(上限10元/兆瓦时)。
- 市场联动分成模式:部分电量按批发与零售市场均价的较小值结算,其余按批发均价结算。
- 动态定价模式:基于现货市场价格浮动,实现分时电价与实时价格联动。
-
与实时市场的衔接:
- 在现货市场环境下,零售商需通过日前市场锁定基础电量,并通过实时市场调整偏差。例如,采用混合定价策略:日前阶段提供固定价格套餐,实时阶段允许用户根据价格信号调整用电行为。
三、鲁棒定价策略的数学模型与关键技术
鲁棒优化方法通过构建抗风险模型,帮助零售商应对实时市场的不确定性:
-
两阶段混合整数规划模型:
- 第一阶段(日前决策) :确定零售电价与购电计划,目标为最大化预期利润。
- 第二阶段(实时调整) :基于实时电价与需求响应,优化能量管理与购电偏差补偿。
- 目标函数:maxρt,Qt∑t(ρtDt−λtQt)−风险惩罚项maxρt,Qt∑t(ρtDt−λtQt)−风险惩罚项
其中,ρtρt为零售电价,DtDt为需求,λtλt为实时电价,QtQt为购电量。
-
不确定性建模:
- 实时电价场景聚类:通过历史数据聚类生成典型电价场景,构建离散不确定性集合。
- 电动汽车需求响应:采用主从博弈模型描述用户充放电行为,转化为KKT条件纳入优化。
-
求解算法:
- 列与约束生成(C&CG)算法:将两阶段问题分解为主问题(混合整数二次规划)与子问题(混合整数线性规划),迭代求解最优策略。
- 线性化技术:将非线性电价响应函数近似为分段线性函数,降低计算复杂度。
四、实证分析与应用案例
以IEEE-33节点系统为例的仿真研究表明:
- 风险对冲效果:鲁棒策略可使零售商的利润波动率降低30%-40%,尤其在实时电价极端波动场景下表现稳健。
- 需求响应潜力:通过价格信号引导电动汽车用户转移高峰负荷,系统峰谷差率减少15%,同时提升零售商收益。
- 计算效率:基于MATLAB与GUROBI的求解框架可在5分钟内完成24小时滚动优化,满足实时性要求。
五、未来研究方向
- 多目标优化:引入用户满意度、碳排放约束等多维目标,构建综合决策模型。
- 数据驱动增强:结合机器学习预测实时电价与需求,动态更新不确定性集合。
- 市场机制协同:探索容量市场、辅助服务市场与实时市场的协同定价策略。
结论
实时市场联动下的鲁棒定价策略是电力零售商应对市场化改革的关键工具。通过两阶段优化模型与先进算法,零售商可有效对冲价格波动风险,同时引导用户需求响应,实现经济效益与系统稳定的双赢。随着电力市场改革的深化,动态定价策略的智能化与协同化将成为重要发展趋势。
本文采用IEEE-33节点测试系统,节点边际电价通过二阶锥模型计算得到,节点边际电价通过最小二乘法拟合为一次函数,实时电价场景通过聚类得到,电动汽车类型通过聚类得到,电动汽车需求响应通过主从博弈模型描述并转化为KKT条件,两阶段离散场景分布鲁棒优化模型通过列与约束生成算法迭代求解,主问题为混合整数二次规划问题,子问题为混合整数线性规划问题。
📚2 运行结果
IEEE 33节点配电系统共有32个配电变压器,32条支路,其电压等级为12.66kV,功率基准值为100MVA,最大基础负荷为3715+j2300kVA,节点0为平衡节点,其电压为1.05 p.u.,其拓扑结构如图1所示,线路与配变参数如表1所示。
图1 IEEE 33节点配电系统拓扑结构
表1 IEEE 33节点配电系统参数
节点i | 节点 j | 阻抗 (Ω) | 负荷 (kVA) | 节点i | 节点j | 阻抗 (Ω) | 负荷 (kVA) |
0 | 1 | 0.0922+j0.047 | 100+j60 | 16 | 17 | 0.3720+j0.5740 | 90+j40 |
1 | 2 | 0.4930+j0.2511 | 90+j40 | 1 | 18 | 0.1640+j0.1565 | 90+j40 |
2 | 3 | 0.3660+j0.1864 | 120+j80 | 18 | 19 | 1.5042+j1.3554 | 90+j40 |
3 | 4 | 0.3811+j0.1941 | 60+j30 | 19 | 20 | 0.4095+j0.4784 | 90+j40 |
4 | 5 | 0.8190+j0.7070 | 60+j20 | 20 | 21 | 0.7089+j0.9373 | 90+j40 |
5 | 6 | 0.1872+j0.6188 | 200+j100 | 2 | 22 | 0.4512+j0.3083 | 90+j50 |
6 | 7 | 0.7114+j0.2351 | 200+j100 | 22 | 23 | 0.8980+j0.7091 | 420+j200 |
7 | 8 | 1.0300+j0.7400 | 60+j20 | 23 | 24 | 0.8960+j0.7011 | 420+j200 |
8 | 9 | 1.0440+j0.7400 | 60+j20 | 5 | 25 | 0.2030+j0.1034 | 60+j25 |
9 | 10 | 0.1966+j0.0650 | 45+j30 | 25 | 26 | 0.2842+j0.1447 | 60+j25 |
10 | 11 | 0.3744+j0.1238 | 60+j35 | 26 | 27 | 1.0590+j0.9337 | 60+j20 |
11 | 12 | 1.4680+j1.1550 | 60+j35 | 27 | 28 | 0.8042+j0.7006 | 120+j70 |
12 | 13 | 0.5416+j0.7129 | 120+j80 | 28 | 29 | 0.5075+j0.2585 | 200+j600 |
13 | 14 | 0.5910+j0.5260 | 60+j10 | 29 | 30 | 0.9744+j0.9630 | 150+j70 |
14 | 15 | 0.7463+j0.5450 | 60+j20 | 30 | 31 | 0.3105+j0.3619 | 210+j100 |
15 | 16 | 1.2890+j1.7210 | 60+j20 | 31 | 32 | 0.3410+j0.5362 | 60+j40 |
部分结果:
部分代码:
%% 建模
pch=data_MP.pch;pdis=data_MP.pdis;price_EV=data_MP.price_EV;Pb_DA=data_MP.Pb_DA;price_DA=data_MP.price_DA;%鲁棒主问题数据
Pch=sdpvar(24,10);%储能系统充电
Pdis=sdpvar(24,10);%储能系统放电
S_ESS=sdpvar(24,10);%储能系统电量状态
Pb_RT=sdpvar(24,10);%实时购电量
Ps_RT=sdpvar(24,10);%实时售电量
ratio=sdpvar(10,1);%不同类型电动汽车的分布
C_ESS=[0<=Pch<=250,0<=Pdis<=250,200<=S_ESS<=950,
S_ESS(1,:)==500+0.95*Pch(1,:)-Pdis(1,:)/0.95,
S_ESS(2:24,:)==S_ESS(1:23,:)+0.95*Pch(2:24,:)-Pdis(2:24,:)/0.95,
S_ESS(24,:)==500];%储能系统约束条件
C_CS=[0<=Pb_RT<=500,0<=Ps_RT<=500,Pb_DA*ones(1,10)+Pb_RT+Pdis+N*pdis*ratio*ones(1,10)==Ps_RT+Pch+N*pch*ratio*ones(1,10)];%零售商约束条件
obj_inner=sum(PDF.*sum(-(price_RT'+0.001).*Pb_RT+(price_RT'-0.001).*Ps_RT));%内层问题目标函数(最大化)
Constraints_inner=[C_ESS,C_CS];%内层问题约束条件
ops=sdpsettings('kkt.dualbound',0);%不进行对偶边界估计
[KKTsystem,details]=kkt(Constraints_inner,-obj_inner,ratio,ops);%内层问题的KKT条件
C_RO=[sum(ratio)==1,0<=ratio<=1,sum(abs(ratio-ratio_initial))<=log(20/(1-0.99))*10/2000,abs(ratio-ratio_initial)<=log(20/(1-0.99))/2000];%离散场景概率约束
%% 求解
Constraints_outer=[KKTsystem,C_RO];%外层问题约束条件
obj_outer=-price_DA'*Pb_DA+sum(PDF.*sum(-(price_RT'+0.001).*Pb_RT+(price_RT'-0.001).*Ps_RT))+N*price_EV'*(pch-pdis)*ratio;%外层问题目标函数(零售商的收益)
ops=sdpsettings('solver','gurobi','gurobi.FeasibilityTol',1e-9,'gurobi.IntFeasTol',1e-9,'gurobi.MIPGap',1e-9,'gurobi.OptimalityTol',1e-9);%求解器参数,MILP问题
result=optimize(Constraints_outer,obj_outer,ops)%求解最小化问题
result_SP.ratio=double(ratio);result_SP.obj=double(obj_outer);
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]詹祥澎,杨军,王昕妍,沈一民,钱晓瑞,吴赋章.考虑实时市场联动的电力零售商鲁棒定价策略[J].电网技术,2022,46(06):2141-2153