👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
一、梯水电站群的定义与特性
计及梯级水电站群联合控制的水火电节能优化调度是一个具有多约束条件、高维数、非凸、非
线性、多时段、带时延的复杂优化问题[1]。随着系统工程理论和现代计算机技术在水库优化调度领
域的不断应用,各种新模型与算法相继出现,常用的求解方法有 2 大类[2]。一类是传统的优化算法,包括启发式方法、等微增率法、拉格朗日乘子法、网络流规划法、线性规划法、动态规划法、三角旋回算法、分解协调算法等。传统算法对目标函数和初始解等有严格的要求,因此其在处理复杂梯级水火电节能优化调度问题时容易陷入局部最优解。另一类是智能算法,包括:随机规划法、内点法、遗传算法、人工免疫算法、人工神经网络法、模拟退火方法、混沌算法、粒子群算法、模糊优化方法、蚁群算法、微分进化算法等[3-11]。
尽管近年来各种新能源迅速发展,但传统的火力与水力发电仍然在电力系统中占据着主导地位。
水火电系统的发电调度一直是电力系统经济调度中研究的重要问题之一,其主要目的在于使火电厂
的耗煤量最小,即发电成本最小[1] 。考虑到其庞大的体量,短期水火电调度优化不仅可以带来巨大的经济效益,也有着良好的环保价值。短期水火电调度优化问题由于要服从众多的复杂约束条件,研究者面临的是一个大型的动态、非凸、有时滞的非线性规划问题[2] 。解决这一问题
的传统方法主要是数学规划,例如线性规划法、非线性规划法、动态规划法等。但传统方法应对上述难点时表现出明显的缺陷,往往陷入维数灾的困局 ,冗 长 的 计 算 时 间 也 无 法 满 足 实 际 的 使 用要求。
图中:qi(t)是各级电站 t 时刻的自然来水量(m3 /s);Qi(t)是各级电站在 t 时刻的发电流量(m3 /s);
yi(t)是各级电站 t 时刻的弃水量;τ 为水流从上级电站流到下级电站所需时间,即水流时滞。因此,每个梯级水电站机组出力不仅与本身的水库容量、机组特性、自然来水量等因素有关,也与上级电站的弃水量和发电流量密切相关,同时也影响下级电站的发电特性。也就是说,梯级水电站间存在时间和空间上的水力耦合特性。
1. 基本概念
梯水电站群指在一条河流上下游按梯级顺序建设的水电站集合,通过水文、电力及库容的协同实现整体效益最大化。其结构包括坝式、引水式或混合式,衔接方式分为齐平衔接、重叠衔接和不衔接三种。
2. 核心特点
- 水文相关性:上游电站的放水直接影响下游电站的入库流量,需全局协调水量分配。
- 库容调节能力:梯级水库可平抑径流波动,平衡汛期与枯水期的发电出力,提升供电稳定性。
- 综合效益叠加:上游水库调节可提高下游电站的保证出力,联合调度能缓解防洪与发电矛盾,并缩短初期蓄水时间。
- 高维度复杂性:涉及多电站、多时段、多变量(如水头变化、水量平衡),需处理防洪、航运、生态等多目标约束。
3. 开发优势
梯级连续开发可降低施工成本(如导流流量减少)、提升设备利用率,并快速实现效益叠加。典型案例包括美国哥伦比亚河、中国南盘江红水河梯级开发,后者已建成装机容量438.2万kW,占规划总量的37.2%。
二、水火电联合调度的必要性与技术方法
1. 互补性需求
- 出力特性互补:水电具有随机性和快速响应能力,适合调峰;火电出力稳定,可弥补水电波动。
- 能源结构优化:水电替代火电可降低化石燃料消耗,减少碳排放。例如,乌江梯级项目通过联合调度年减排CO₂ 7.42万吨。
- 经济效益提升:优化调度可降低火电运行成本(如燃料、维护费用),同时通过水电满发减少弃水损失。
2. 联合调度模型构建
- 目标函数:通常包括最大化水电利用率、最小化火电成本及污染排放,并引入多目标优化(如Pareto最优解)。
- 约束条件:涵盖电网功率平衡、机组出力限制、水库水位变动范围及生态流量要求。
- 算法选择:传统方法(线性规划、动态规划)与现代智能算法(遗传算法、粒子群优化、强化学习)结合,解决高维度非线性问题。
3. 关键技术策略
- 水文预测与场景分析:基于气象模型和机器学习提高径流预报精度,生成多场景优化方案以增强鲁棒性。
- 滚动优化与实时控制:根据最新水文数据动态调整调度计划,如贵州乌江采用“月-周-日-小时”多时间尺度嵌套模型。
- 多能源协同:整合风电、光伏等可再生能源,构建水-火-风-光互补系统,提升能源消纳能力。
三、节能调度核心策略与创新技术
1. 减少弃水与提高水头
- 弃水控制:上游水库在洪水期提前拦蓄,待来水减少后释放,使水流全部通过机组发电。如溪洛渡水库为三峡电站减少弃水。
- 水头优化:通过“早蓄水、晚消落”策略调整水位,提升非汛期平均运行水头。长江电力通过此方法使水能利用率提高4.91%。
2. 智能调度系统
- 数据驱动决策:整合水情、气象、设备状态等多源数据,构建实时感知与共享平台。大渡河流域通过光纤环网与卫星通信实现全流域数据互通。
- AI与大数据应用:采用强化学习优化调度策略,预测性维护降低停机时间。三峡梯级利用“华电睿信”系统实现机组智能控制。
3. 多目标权衡与决策
- Vague集理论:结合主客观权重,评估防洪、发电、生态等目标的综合贴近度,辅助方案优选。
- 分层分区分级调度:按电网层级(如省调、地调)划分调度权限,兼顾局部与全局利益。
四、典型案例与效益分析
1. 贵州乌江梯级项目
- 技术措施:建立“蓄满-防洪-发电”多模式调度模型,通过实时优化减少弃水3.28亿m³/年,等效节煤2.79万吨。
- 效益成果:节水增发电量8450万kWh,入选全球能源转型创新案例,展示水电与电网协同的标杆实践。
2. 长江电力调度优化
- 策略应用:汛期满出力运行(如溪洛渡电站1170小时),结合水情预报动态调整蓄水计划。
- 经济效益:2018年节水增发电量99.3亿kWh,减少弃水损失并提升调峰能力。
3. 云南南盘江红水河
- 开发模式:10级梯级规划中,已建成电站实现库容联动,通过联合蓄水缩短下游电站蓄水周期,提升整体调节能力。
五、挑战与未来方向
1. 现存问题
- 模型复杂度:高维变量与多重约束导致求解困难,需简化模型并提升算法效率。
- 数据壁垒:跨部门数据孤岛阻碍调度协同,需统一标准与接口(如大渡河公司采用DataX工具整合多系统数据)。
- 市场机制缺失:当前调度多依赖行政指令,未来需引入电力市场竞价机制,实现经济与环境效益双赢。
2. 发展趋势
- 数字孪生技术:构建虚拟电站模拟运行场景,预演调度方案风险。
- 多能联储系统:配套抽水蓄能、电化学储能,平抑可再生能源波动。
- 碳交易集成:将碳排放成本纳入目标函数,推动调度向低碳化演进。
六、结论
梯水电站群的水火电节能调度是能源系统低碳转型的关键抓手,其核心在于通过水文-电力耦合模型、智能算法及多目标决策,实现资源高效利用与综合效益最大化。未来需进一步突破算法瓶颈、打通数据链条,并探索市场驱动的新模式,为构建新型电力系统提供支撑。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]袁旭峰,韩士博,熊炜,邹晓松.计及梯级水电站群的水火电节能调度策略[J].电网技术,2014,38(03):616-621.DOI:10.13335/j.1000-3673.pst.2014.03.011.
[2]王归新,田中天.基于分层混合灰狼-哈里斯鹰算法的水火电调度优化[J].电工材料,2021(03):58-62.DOI:10.16786/j.cnki.1671-8887.eem.2021.03.016.