💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
可再生能源发电与电动汽车协同调度策略研究
一、可再生能源发电与电动汽车的基础特性
-
可再生能源发电类型与技术原理
根据《可再生能源法》,可再生能源包括风能、太阳能、水能、生物质能等。其发电技术原理如下:- 太阳能:通过光电效应将光能转化为电能,核心是半导体材料的电子跃迁。
- 风能:风力驱动叶片带动发电机,机械能转化为电能。
- 水能:利用水流或水位差驱动涡轮机发电,包括水轮机和潮汐能。
- 生物质能:通过燃烧或发酵将有机物转化为热能或生物燃料。
这些技术的共同特点是出力具有波动性、间歇性和时空依赖性。
-
电动汽车充电特性与需求预测
电动汽车(EV)充电负荷具有随机性、集中性、波动性和可持续性:- 随机性:充电时间、地点受用户习惯影响。
- 集中性:高峰时段(如下班后)充电需求激增。
- 预测方法:
统计分析法(时间序列、蒙特卡洛模拟)与机器学习方法(基于历史数据建模)结合,可提升预测精度。例如,通过蒙特卡洛模拟出行路径和能耗模型,分析充电需求的时空分布。
二、协同调度的互补性与优化目标
-
波动性匹配与时空互补性
- 时间互补:太阳能日间出力高峰与夜间EV充电需求错峰,风能波动可通过EV储能平抑。例如,家庭光伏系统在白天发电,EV可在夜间存储剩余电能。
- 空间互补:大范围风电场联网可平滑出力波动,EV作为分布式储能单元可调节局部电网负荷。
-
协同调度的优化目标
- 经济性:最小化系统运行成本(含设备折旧、购电成本)。
- 环保性:减少碳排放,促进可再生能源消纳。例如,通过分时电价引导EV在可再生能源出力高峰充电。
- 电网稳定性:降低峰谷差、优化爬坡速率。研究表明,有序充电策略可使系统峰荷降低7%、峰谷差缩小33%。
三、典型协同调度模型与算法
-
混合整数规划(MIP)模型
- 应用场景:用于解决多资源协同调度问题,如配电系统中EV与风/光出力的随机优化。
- 案例:构建以平抑可再生能源波动为目标的模型,通过交叉熵算法求解,验证了33节点配电系统的可行性和经济性。
-
强化学习与模型预测控制(MPC)
- 深度确定性策略梯度(DDPG) :适用于连续控制问题,如基站储能调度。
- MPC算法:动态调整EV充电功率,结合可再生能源预测值滚动优化。仿真显示,MPC可提升可再生能源利用率10%-15%。
-
多目标协同优化框架
- 分层优化:分为日前优化、实时优化和跟踪控制三层,结合经济性与稳定性目标。
- 虚拟储能(VES)模型:将EV充放电等效为储能充放能,简化调度复杂度。
四、实际应用案例与技术挑战
- V2G技术的应用与效益
- 案例:
- 蔚来汽车参与全国最大规模V2G试验,验证了EV反向供电的经济性。
- 重庆公交集团构建“光储充放”一体化站,年碳减排95吨。
- 效益:
- 用户侧:峰谷电价差收益(如每50kWh充放电获利35元)。
- 电网侧:降低扩容需求,提升可再生能源渗透率。
- 主要挑战
- 技术瓶颈:电池循环寿命(需保证至少1500次V2G循环)、充放电效率损失。
- 政策与市场机制:缺乏统一标准、电价机制不完善。
- 经济性:V2G充电桩建设成本高(仅占现有桩的0.025%)。
五、未来研究方向
- 多能源系统协同:探索EV与综合能源系统(电/热/冷/气)的耦合优化。
- 智能合约与区块链:实现EV用户、电网、充电运营商间的可信交易。
- 数字孪生技术:构建高精度预测模型,提升调度实时性。
结论:可再生能源与EV的协同调度需结合技术优化、政策引导和市场机制,其核心是通过智能算法实现波动匹配与多目标优化。未来需突破电池寿命、标准化协议等瓶颈,推动“车-桩-网-储”一体化发展。
📚2 运行结果
部分代码:
%% 1.设参
mpc = IEEE33BW;
pload = mpc.Pload(:,t)*(pload1(t)/sum(mpc.Pload(:,t)))/100;%节点有功负荷
qload = mpc.Qload(:,1);%节点无功负荷
branch = mpc.branch_CG(1:32,:);
branch(:,3) = branch(:,3)*100/(12.66^2);%求阻抗标幺值
r=real(branch(:,3));
x=imag(branch(:,3));
r=r(1:32);
x=x(1:32);
T = 1;%时段数为1小时
nb = 33;%节点数,根节点为33
nl = 32;%支路数
nc = 5;%联络开关数
upstream=zeros(nb,nl);%代表流入节点支路
dnstream=zeros(nb,nl);%代表流出节点支路
for i=1:32
upstream(i,i)=1;
end
% upstream(20,33)=1;%支路33为20-7支路,流入节点20
% upstream(14,34)=1;%支路34为14-8支路,流入节点14
% upstream(21,35)=1;%支路35为21-11支路,流入节点21
% upstream(32,36)=1;%支路36为32-17支路,流入节点32
% upstream(28,37)=1;%支路37为28-24支路,流入节点28
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]赵浩然. 可再生能源发电与电动汽车的协同调度策略研究[D].山东大学,2020.DOI:10.27272/d.cnki.gshdu.2020.001215.