💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
参考文献:
如何利用电力系统与天然气系统的耦合特性来协调优化气电综合能源系统的能量传输、分配问 题,成为近年来国内外学者们的研究热点。传统的气电互联系统只能靠燃气机组实现天然气到电能
的单向转换,随着电转气(power-to-gas,P2G)技术以及设备的日益成熟,如今已经可以实现能量在气电互联系统间的双向流动。文献[5]考虑风电和 P2G技术的应用过程,建立基于机会约束的双层气电综合系统经济调度模型;文献[6]建立含 P2G 设备的气电综合系统优化调度模型,并分析不同 P2G 过程对传输网络的运行影响;文献[7]以系统运行成本最小化和可再生能源利用率最大化为目标函数,构建了含 P2G 过程的气电综合能源系统优化运行模型。目前,大多数研究主要针对气电综合能源系统主网的优化调度问题,其中对于天然气系统主网的建模主要基于稳态天然气潮流方程。文献[8]建立稳态气电综合能源系统短期协调优化调度模型,并提出利用引力搜索算法进行求解;文献[9]利用 Weymouth稳态天然气潮流方程建立基于分布式框架的气电综合系统协同优化调度模型,并提出应用交替方向乘法器方法来迭代求解;文献[10]利用基于增强约束的多目标优化方法来求解稳态气电综合系统优化调度模型。基于稳态天然气潮流的优化模型求解方法已经发展得较为成熟,上述研究都集中在气电综合能源系统的主网优化调度问题方面,配网优化调度方面的研究还较少。由于电力和天然气系统中的某些物理运行特性,上述研究成果中所建立的气电综合能源系统优化运行模型大多数都是非线性的,这将会给求解带来较大的困难。针对气电综合能源系统中非线性约束条件的处理方法,目前主要分为两大类:一是利用线性化方法将原问题转换为混合整数线性规划模型;二是利用锥优化方法将原问题转换为混合整数二阶锥规划模型。文献[11]运用分段线性化方法对 Weymouth 天然气潮流方程进行处理,将主网气电综合系统优化调度模型转换为混合整数线性规划问题进行求解;文献[12]运用一阶泰勒级数展开方法对天然气潮流方程进行线性化处理;文献[13]对输电网、输气网非线性潮流方程同时进行了二阶锥松弛处理,以达到气电综合系统的联合优化规划;文献[14]对天然气潮流方程进行二阶锥放缩处理,构建综合能源系统日前调度概率最优能量流模型;文献[15]运用增量分段线性化、二阶锥松弛方法分别对配网系统的非线性天然气潮流、电力系统潮流进行处理后,结合改进的遗传算法对气电配网系统规划模型进行求解;文献[16]运用二阶锥松弛方法对配电网、配气网的潮流方程进行松弛,将综合能源配网规划问题其转化为可直接求解的混合整数二阶锥模型。需求侧响应能够提高电力系统的新能源消纳能力以及运行经济性,从而促进能源的高效利用,这在很多研究成果得到了证明[17-19]。近年来,随着能源互联的不断发展,冷、热、气、电等多种负荷形式的需求响应在综合能源系统的协调规划和
运行方面发挥了有效作用。文献[20]采用粒子群算法对电力负荷曲线进行优化,在此基础上建立气电联合系统优化运行模型;文献[21]在气电综合能源系统主网优化运行模型中引入价格型和替代型需求响应;文献[22]计及用户主/被动负荷平移行为,构建两阶段电−气−热综合能源系统两阶段日前经济调度模型;文献[23]在计及多类型负荷需求响应基础上,提出热电联供系统优化运行策略。
考虑气电联合需求响应的气电综合能源配网系统协调优化运行研究
摘要:在未来多能互补、综合能源系统的背景下,传统配电网和配气网独立调度运行的模式已无法满足多种能源互补的运行要求。本文提出气电综合能源配网系统最优潮流的凸优化方法,利用二阶锥规划处理配电网潮流方程约束,采用增强二阶锥规划与泰勒级数展开相结合的方法处理天然气潮流方程约束,将非线性的气电综合能源配网系统优化调度问题转化为混合整数二阶锥规划模型,同时引入气电联合需求响应,以实现气电综合能源配网系统的协调优化运行,提高系统调度的可控性、灵活性以及新能源消纳能力。
一、引言
随着全球能源转型的推进,多能互补和综合能源系统成为发展趋势。气电综合能源配网系统作为综合能源系统的重要组成部分,将天然气和电力系统有机结合。然而,传统配电网和配气网独立调度运行的模式,难以实现能源的高效利用和协同运行。在这种背景下,考虑气电联合需求响应,对气电综合能源配网系统进行协调优化运行研究具有重要意义。
二、气电综合能源配网系统概述
(一)系统组成
气电综合能源配网系统主要包括电力网络、天然气网络以及相关的转换设备。电力网络涵盖了发电厂、变电站、输电线路和用电设备等;天然气网络则包含天然气生产设施、运输管道、储气设施以及天然气用户等。转换设备如天然气发电机组,可将天然气转化为电能,实现气电之间的能量转换。
(二)运行特点
气电综合能源配网系统中,电力和天然气的需求相互影响。例如,在某些工业用户中,电力需求的增加可能导致对天然气驱动设备的使用减少,反之亦然。此外,两种能源的供应和需求在时间和空间上存在差异,需要进行协调调度以满足用户需求并提高系统效率。
三、二阶锥规划在气电综合能源配网系统中的应用
(一)二阶锥规划基础
(二)配电网潮流方程约束处理
在气电综合能源配网系统中,配电网潮流方程是一组非线性方程。利用二阶锥规划方法,可将其转化为二阶锥约束形式。通过合理的变量替换和约束变换,将非线性的潮流方程转化为可在二阶锥规划框架下求解的问题,从而有效处理配电网潮流方程约束,优化配电网的运行。
(三)天然气潮流方程约束处理
天然气潮流方程同样具有非线性特性。本文采用增强二阶锥规划与泰勒级数展开相结合的方法对其进行处理。首先,对天然气潮流方程进行泰勒级数展开,将其近似为线性函数,然后利用增强二阶锥规划方法,进一步提高对天然气潮流方程约束的处理精度,将其转化为适合二阶锥规划求解的形式。
四、气电联合需求响应
(一)气电联合需求响应概念
气电联合需求响应是指在气电综合能源配网系统中,当能源需求发生变化时,系统能够协调电力和天然气的供应,使两者协同响应,以满足用户需求并优化系统运行。例如,在用电高峰时段,可适当增加天然气发电,同时调整天然气用户的用气策略,实现气电之间的互补。
(二)气电联合需求响应模型
建立气电联合需求响应模型,需要考虑电力和天然气的需求弹性、用户响应特性以及系统运行约束等因素。通过对用户的能源消费行为进行分析,建立需求响应的数学模型,以描述气电联合需求响应的过程和效果。该模型将作为气电综合能源配网系统优化调度模型的一部分,参与系统的协调优化运行。
五、气电综合能源配网系统协调优化运行模型
(一)模型构建
将处理后的配电网潮流方程约束、天然气潮流方程约束以及气电联合需求响应模型相结合,构建气电综合能源配网系统协调优化运行的混合整数二阶锥规划模型。该模型以系统运行成本最小、新能源消纳最大化等为目标函数,同时考虑系统的功率平衡约束、设备容量约束等多种约束条件。
(二)模型求解
利用成熟的二阶锥规划求解器,对构建的混合整数二阶锥规划模型进行求解。求解过程中,根据模型的特点和规模,选择合适的算法和参数,以提高求解效率和精度。通过求解模型,得到气电综合能源配网系统中各设备的最优运行状态和能源分配方案。
六、仿真分析
具体以运行结果为准。
(一)仿真系统设置
搭建一个典型的气电综合能源配网系统仿真模型,包括多个电力节点、天然气节点以及相关的转换设备。设置不同的负荷场景和新能源接入比例,jut
(二)仿真结果分析
- 二阶锥松弛精度:对比采用增强二阶锥规划与泰勒级数展开相结合的方法和传统方法处理天然气潮流方程约束时,配气网的二阶锥松弛精度。结果表明,本文提出的方法能更好地提高配气网的二阶锥松弛精度,从而更准确地求解气电综合能源配网系统的优化问题。
- 系统运行经济性:分析考虑气电联合需求响应和不考虑气电联合需求响应两种情况下,系统的运行成本。仿真结果显示,考虑气电联合需求响应能够显著降低系统运行成本,提高系统运行的经济性。
- 新能源消纳能力:研究不同新能源接入比例下,系统对新能源的消纳能力。结果表明,引入气电联合需求响应后,系统能够更好地消纳新能源,提高新能源在气电综合能源配网系统中的占比,促进能源结构的清洁化和可持续发展。
七、结论与展望
(一)研究结论
本文提出的基于二阶锥规划的气电综合能源配网系统协调优化运行方法,通过合理处理配电网和天然气网的潮流方程约束,并引入气电联合需求响应,有效提高了系统调度的可控性、灵活性以及运行经济性和新能源消纳能力。所构建的混合整数二阶锥规划模型能够准确求解气电综合能源配网系统的优化调度问题,为气电综合能源配网的规划设计和运行提供了有力支撑。
(二)研究展望
未来研究可以进一步考虑更复杂的实际因素,如能源市场价格波动、设备故障等对气电综合能源配网系统协调优化运行的影响。同时,随着人工智能技术的发展,可探索将深度学习等方法与二阶锥规划相结合,以提高系统的自适应能力和优化效果,为综合能源系统的发展提供更完善的技术支持。
📚2 运行结果
部分代码:
SB = 10; % 基准功率 MVA
VB = 12.66; % 基准电压 kV
ZB = VB^2/SB; % 基准阻抗
IB = SB/(sqrt(3)*VB); % kA 可以不用
% 支路数据
% 线路号 、首节点、末节点、有功负荷、无功负荷、阻、抗、线路载流量
PDN_data = [
1 1 2 100 60 0.0922 0.047 10000
2 2 3 90 40 0.493 0.2511 10000
3 3 4 120 80 0.366 0.1864 10000
4 4 5 60 30 0.3811 0.1941 10000
5 5 6 60 20 0.819 0.707 10000
6 6 7 200 100 0.1872 0.6188 10000
7 7 8 200 100 1.7114 1.2351 10000
8 8 9 60 20 1.03 0.74 10000
9 9 10 60 20 1.044 0.74 10000
10 10 11 45 30 0.1966 0.065 10000
11 11 12 60 35 0.3744 0.1238 10000
12 12 13 60 35 1.468 1.155 10000
13 13 14 120 80 0.5416 0.7129 10000
14 14 15 60 10 0.591 0.526 10000
15 15 16 60 20 0.7463 0.545 10000
16 16 17 60 20 1.289 1.721 10000
17 17 18 90 40 0.732 0.574 10000
18 2 19 90 40 0.164 0.1565 10000
19 19 20 90 40 1.5042 1.3554 10000
20 20 21 90 40 0.4095 0.4784 10000
21 21 22 90 40 0.7089 0.9373 10000
22 3 23 90 50 0.4512 0.3083 10000
23 23 24 420 200 0.898 0.7091 10000
24 24 25 420 200 0.896 0.7011 10000
25 6 26 60 25 0.203 0.1034 10000
26 26 27 60 25 0.2842 0.1447 10000
27 27 28 60 20 1.059 0.9337 10000
28 28 29 120 70 0.8042 0.7006 10000
29 29 30 200 600 0.5075 0.2585 10000
30 30 31 150 70 0.9744 0.963 10000
31 31 32 210 100 0.3105 0.3619 10000
32 32 33 60 40 0.341 0.5302 10000
];
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。(内容仅供参考,具体以运行结果为准。)
[1]C. He, C. Dai, L. Wu and T. Liu, "Robust Network Hardening Strategy for Enhancing Resilience of Integrated Electricity and Natural Gas Distribution Systems Against Natural Disasters," in IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 5787-5798, Sept. 2018, doi: 10.1109/TPWRS.2018.2820383.
[2]刘天琪,张琪,何川.考虑气电联合需求响应的气电综合能源配网系统协调优化运行[J].中国电机工程学报,2021,41(05):1664-1677.DOI:10.13334/j.0258-8013.pcsee.200385.