【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于粒子群算法的光伏与蓄电池DG规模优化调度研究

一、能量管理系统(EMS)架构与分布式能源(DG)技术特性

二、粒子群算法(PSO)在DG调度中的适用性

三、多目标优化模型构建

四、设备参数对优化性能的影响机制

五、仿真案例分析

六、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

基于粒子群算法的光伏与蓄电池DG规模优化调度研究

能量管理系统 (Energy Management System, EMS) 是一种用于优化调度分布式能源 (Distributed Generation, DG) 的技术。其中,光伏和蓄电池是常见的分布式能源形式。该系统利用粒子群算法进行规模优化调度,以实现对DG的有效管理和利用。

在该研究中,光伏和蓄电池作为分布式能源设备,被整合到能量管理系统中。粒子群算法作为一种优化算法应用于系统中,用于在考虑系统约束条件的情况下,寻找最佳的光伏和蓄电池的规模和调度策略。

研究的目标是通过对光伏和蓄电池的规模进行优化,使得系统的能效最大化或运行成本最小化。同时,通过合理调度光伏发电和蓄电池充放电,实现对电网负荷的平衡和优化。

通过粒子群算法的优化调度,能量管理系统可以更好地协调光伏和蓄电池等分布式能源设备的运行,实现电力系统的高效、稳定和可靠运行。此外,该研究还可以为制定分布式能源的规模和调度策略提供参考和指导,促进可再生能源的大规模应用和智能电网的发展。

一、能量管理系统(EMS)架构与分布式能源(DG)技术特性
  1. EMS系统核心架构
    能量管理系统(EMS)由数据采集层、数据处理层、能量管理与优化层、用户界面层构成。数据采集层通过传感器实时获取光伏发电量、蓄电池荷电状态(SOC)等参数;数据处理层进行数据清洗与存储;优化层基于算法生成调度策略;用户界面层提供可视化监控与交互功能。EMS通过链式结构实现能源效率提升(如降低10%-20%运营成本)和可再生能源消纳率优化。

  2. DG分类与技术挑战
    DG按功率规模分为微型(1W-5kW)、小型(5kW-5MW)、中型(5-50MW)和大型(50-300MW)。光伏和蓄电池作为典型DG类型,具有以下特性:

     

    • 光伏:输出功率受光照强度、温度影响显著,模型为 PPV(t)=Pstc⋅G(t)Gstc⋅[1+k(T(t)−Tstc)]PPV​(t)=Pstc​⋅Gstc​G(t)​⋅[1+k(T(t)−Tstc​)] ,呈现间歇性与非线性。
    • 蓄电池:需考虑SOC约束(如0.2≤SOC≤0.9)、充放电效率及循环寿命。协同调度需平衡峰谷电价与储能成本。
二、粒子群算法(PSO)在DG调度中的适用性
  1. 算法原理与改进策略
    PSO通过模拟鸟群觅食行为,以粒子位置(解)和速度(搜索方向)迭代寻优。在DG调度中,其优势包括:

    • 多目标优化能力:结合Pareto最优解集,处理经济性(如成本最小化)与环保性(碳排放减少)的冲突。
    • 动态参数调整:惯性权重从0.9逐步降低,平衡全局搜索与局部收敛;自学习因子从1.2降至0.02,增强稳定性。
  2. 算法改进案例

    • 微电网调度:改进PSO将光伏消纳率提升至86.83%,风电消纳率达71.58%,并实现柴油机与储能的错峰互补。
    • 储能容量优化:结合拥挤距离与ε-支配策略,提升解集的多样性与收敛性。
三、多目标优化模型构建
  1. 算法流程

四、设备参数对优化性能的影响机制
  1. 光伏波动性
    光照强度变化导致出力波动,需通过预测模型(如AI辐射预测)减少误差,提升调度策略鲁棒性。

     

  2. 蓄电池特性
    SOC动态约束影响充放电策略。例如,SOC接近下限时需限制放电,避免深度放电损害寿命。PSO需在迭代中动态调整储能调度权重。

     

  3. 多参数耦合效应
    光伏与蓄电池的协同需考虑时间尺度差异(如光伏日内波动 vs. 储能跨时段调节),通过分层优化(日前调度+日内滚动修正)降低复杂度。

五、仿真案例分析
  1. IEEE 33节点系统
    在负载率0.8时,PSO优化后年度网损成本降低8,678美元,母线电压稳定性提升15%。DG最佳位置通过电压稳定性指数(VSI)确定,如线路7末端节点8。

  2. 园区微电网
    采用改进PSO后,总供电成本降低12.7%,光伏消纳率从70%提升至86.8%,储能充放电效率优化至92%。

六、结论与展望

PSO在DG规模优化中展现高效性,但需进一步研究:

  • 不确定性建模:结合强化学习处理风光出力随机性。
  • 硬件协同:边缘计算设备实现实时调度(如5ms级响应)。
  • 政策适配:融合碳交易机制与电价激励,提升模型实用性。

通过上述多维优化,PSO为构建高弹性、低成本的分布式能源系统提供了理论支撑与技术路径。

📚2 运行结果

部分代码:

%% Main PSO
for n_ite=1:set.Niteration
    for n_par=1:set.Nparticle
        [LPSP,COE]=EMS(particle(n_par).position(1),...
            particle(n_par).position(2),...
            particle(n_par).position(3));
        %% Calculate Mark
        Mark=set.weight_LPSP*abs(LPSP-set.desired_LPSP)+...
            set.weight_COE*COE/set.Normal_COE;
        %% Best Particle
        if isempty(particle(n_par).best_Mark) || particle(n_par).best_Mark>Mark
            particle(n_par).best_position=particle(n_par).position;
            particle(n_par).best_LPSP=LPSP;
            particle(n_par).best_COE=COE;
            particle(n_par).best_Mark=Mark;
        end
        %% Best Global
        if (n_ite==1 && n_par==1) || best_global.Mark>Mark
            best_global.position=particle(n_par).position;
            best_global.LPSP=LPSP;
            best_global.COE=COE;
            best_global.Mark=Mark;
        end
        log_global(n_ite)=best_global;
        
        %% Velocity and New Position
        particle(n_par).velocity=set.w*particle(n_par).velocity...
            +set.c1*(particle(n_par).best_position-particle(n_par).position)...
            +set.c2*(best_global.position-particle(n_par).position);
        particle(n_par).position=particle(n_par).position...
            +particle(n_par).velocity;
        
        %% Round Position
        particle(n_par).position(1)=round(particle(n_par).position(1));
        particle(n_par).position(2)=round(particle(n_par).position(2));
        particle(n_par).position(3)=round(particle(n_par).position(3));
        
        %% Limit Position
        if particle(n_par).position(1)<set.Npv_min
            particle(n_par).position(1)=set.Npv_min;
        end
        if particle(n_par).position(2)<set.Nbat_min
            particle(n_par).position(2)=set.Nbat_min;
        end
        if particle(n_par).position(3)<set.Ndg_min
            particle(n_par).position(3)=set.Ndg_min;
        end
        if particle(n_par).position(1)>set.Npv_max
            particle(n_par).position(1)=set.Npv_max;
        end
        if particle(n_par).position(2)>set.Nbat_max
            particle(n_par).position(2)=set.Nbat_max;
        end
        if particle(n_par).position(3)>set.Ndg_max
            particle(n_par).position(3)=set.Ndg_max;
        end
    end
end
clear LPSP COE Mark n_ite n_par

%% Show Result
for n_ite=1:set.Niteration
    LPSP(n_ite)=log_global(n_ite).LPSP;
    COE(n_ite)=log_global(n_ite).COE;
end
subplot(2,1,1);
plot(LPSP);
grid on;
xlabel('n-th Iteration')
ylabel('Loss of Load Probability, LPSP');

subplot(2,1,2);
plot(COE);
grid on;
xlabel('n-th Iteration')
ylabel('Cost of Energy, COE ($)');

tpro=toc;
fprintf('The optimum system size is:\n   Npv=%d\n   Nbat=%d\n   Ndg=%d\nwith the LPSP = %.3f%% and COE = $%.2f\nCompute in %.2f s\n',...
    best_global.position,best_global.LPSP*100,best_global.COE,tpro);
beep;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]张翀,张嘉楠,杨伟涛等.光储充多站合一能量管理系统设计[J].电气技术与经济,2023(03):125-128.

[2]杨睿陌. 基于混合MPPT算法的光伏能量管理系统设计[D].哈尔滨工业大学,2022.DOI:10.27061/d.cnki.ghgdu.2022.001839.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值