💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
2.1 鲁棒优化(Robust Optimization, RO)
2.2 机会约束规划(Chance-Constrained Programming, CCP)
💥1 概述
文献来源:
不确定风功率接入下电-气互联系统的协同经济调度研究
摘要:随着天然气发电机组数量的逐渐增长,电力网络和天然气网络之间的耦合加深,它们之间的协同运行变得愈发重要。同时,不确定性新能源的接入给电力和天然气互联系统的经济安全运行带来了挑战。为了应对风电不确定性给互联系统带来的运行风险,采用分布鲁棒机会约束,通过数据驱动的方式,以少量的风电预测误差历史数据得到与矩信息有关的模糊集,并将形成的机会约束问题转化为易于求解的形式。另外,为了保护电、气系统各自的隐私信息,在假设存在第三方可信任的协调者的前提下,利用松弛交替乘子法,实现互联系统的分布式协同运行。仿真结果表明,分布鲁棒优化相比较于传统的随机优化可以实现较低的机会约束违反概率。另外,相比较于传统交替乘子法,松弛交替乘子法能够以更小的迭代次数达到同等的收敛精度。
关键词:
当前,天然气和可再生能源在电力系统中大量使用[1-2]。天然气机组(natural gas units, NGUs)是电力系统中的电力供应商,同时也是天然气网络中的天然气消费者。另外,风能作为最重要的可再生能源之一,在过去几十年中经历了飞速发展[3]。但是,可再生能源固有的间歇性和波动性给电力和天然气互联系统(integrated electricity and natural gas system, IEGS)的联合运营带来了极大的不确定性,从而使其安全性易受影响[4]。因此,具有风电不确定性的IEGS协调调度问题具有重要的研究意义。已经有学者研究机会约束的IEGS最优调度,以应对不确定风电预测误差所引起的运行风险[5]。在机会约束规划中,以概率表示的风险约束是针对物理约束(例如传输的电力流和气体流量),以一定的安全水平来限制不确定风电对线路过载或者管道过载的影响[6]。机会约束规划的解决方案包括场景近似[7],鲁棒优化[8],以及依赖于特定概率分布的分析形式[9]。但是,场景近似通常在计算上比较繁琐,总体上比较保守,而鲁棒优化与场景近似相比更为保守。如果
不确定的参数不符合假定的概率分布,依赖特定分布的求解可能会导致结果不可靠[10]。机会约束的另一个挑战在于可再生能源具有不稳定的特性,难以获得大量的历史数据去刻画可再生能源的概率分布。为了解决这些缺点,有学者提出了基于分布鲁棒的机会约束(distributionally robust chance constraint, DRCC)。在DRCC中,不确定的约束需要在一定的概率下满足在模糊集中的所有分布。例如,文献[11]研究了DRCC基于不确定性参数的均值和协方差矩阵的矩模糊集,考虑风电不确定性对IEGS运行的影响。在文献[12]中,风能不确定性由Wasserstein模糊集描述,即在
Wasserstein距离意义上围绕经验分布的候选分布。
1. 问题背景与挑战
随着风电等可再生能源在电力系统中的渗透率提升,其功率预测误差的随机性和间歇性对电-气互联系统(IEGS)的经济性和鲁棒性提出了双重挑战。风电功率的预测误差呈现尖峰长尾特性、非高斯分布以及与功率水平的关联性,导致传统确定性调度模型难以应对。同时,电力与天然气系统的耦合通过燃气轮机(GT)和电转气(P2G)技术实现双向能量流,需协调两者的动态响应差异。
2. 核心理论方法
2.1 鲁棒优化(Robust Optimization, RO)
- 基本思想:基于不确定参数的边界信息,优化最坏场景下的可行解。与随机规划相比,无需精确概率分布,但解具有保守性。
- 在IEGS中的应用:
- 两阶段模型:第一阶段制定机组启停计划,第二阶段应对最恶劣风电场景。
- 弱鲁棒优化:允许目标函数适度恶化以降低保守性。
- 分布鲁棒优化(DRO) :结合数据驱动的模糊集(如Wasserstein距离)描述风电不确定性。
2.2 机会约束规划(Chance-Constrained Programming, CCP)
- 基本思想:以概率形式约束系统安全条件(如备用容量、管道流量),允许一定置信水平下的风险。
- 关键方法:
- 解析转换:利用随机变量的分布特性(如正态分布、高斯混合模型)将概率约束转化为确定性约束。
- 联合机会约束(JCC) :确保多个安全条件同时满足高置信水平。
- 分布鲁棒机会约束(DRCC) :在模糊集内的所有分布下满足约束,增强鲁棒性。
3. 电-气互联系统的耦合机理与协同调度框架
3.1 耦合元件与动态特性
- 燃气轮机(GT) :将天然气转化为电能,受气网压力动态影响。
- 电转气(P2G) :消纳过剩风电制氢/甲烷,实现电能到气能的转换。
- 多时间尺度协调:小时级优化机组出力与气源流量,秒级调整气网压力以匹配电网需求。
3.2 协同调度模型结构
- 目标函数:最小化总成本(包括燃料成本、弃风惩罚、碳排放成本)。
- 约束条件:
- 电力系统:功率平衡、机组爬坡、线路传输容量。
- 天然气系统:管道流量方程、节点气压约束、气源供气限值。
- 耦合约束:燃气轮机耗气量、P2G产气量与电功率的关联。
4. 联合鲁棒-机会约束建模方法
4.1 模型构建步骤
-
不确定集合构建:
- 基于历史数据,利用条件Copula模型描述风电预测误差的时空相关性。
- 采用Wasserstein模糊集或矩信息模糊集(均值和协方差)捕捉最坏分布。
-
联合优化模型:
- 两阶段分布鲁棒联合机会约束模型(DR-JCCD):
- 第一阶段:日前调度决策(机组组合、P2G计划)。
- 第二阶段:实时调整策略(备用容量、气源压力),应对最劣风电分布。
- 线性决策规则(LDR) :将实时决策变量表示为不确定参数的仿射函数,降低模型复杂度。
- 约束转化与求解:
- 机会约束解析:通过Bonferroni近似或CVaR方法将联合约束分解为单个约束。
- 非线性处理:对天然气Weymouth方程进行二阶锥松弛或分段线性化。
- 分布式求解:采用松弛交替乘子法(R-ADMM)协调电、气子系统隐私信息。
4.2 关键创新点
- 保守性-经济性平衡:通过弱鲁棒优化和DRCC调整置信水平,降低保守性。
- 数据驱动与机理融合:结合Copula模型与物理约束,提升不确定集合的准确性。
- 多时间尺度动态协调:解决电、气系统响应速度差异。
5. 典型案例研究
5.1 系统结构与参数
- 测试系统:改进的IEEE 24节点电网 + 15节点天然气网 + 6节点热网。
- 风电参数:预测误差服从非对称分布,置信水平设为95%。
5.2 结果分析
-
经济性对比:
- DR-JCCD相比纯鲁棒优化(RO)降低1.3%成本,相比随机规划(SP)减少22.3%样本外成本。
- 考虑管存动态特性可降低天然气购气成本12%。
-
鲁棒性验证:
- 联合机会约束下,线路过载和气压越限概率均低于5%。
- 松弛交替乘子法(R-ADMM)较传统ADMM收敛速度提升30%。
-
低碳效益:
- P2G与燃气轮机协同调度减少弃风率18%,碳排放降低25%。
6. 未来研究方向
- 多能源耦合扩展:纳入氢能储能与碳捕集技术。
- 高阶不确定性建模:考虑风光出力时空相关性及极端天气事件。
- 智能算法融合:结合深度强化学习优化实时调度策略。
结论
在不确定风功率接入下,电-气互联系统的协同经济调度需综合鲁棒优化与机会约束规划的优势。通过数据驱动的不确定集合构建、多时间尺度动态协调及分布式求解算法,可在经济性、鲁棒性和低碳目标间实现有效平衡。未来需进一步探索多能流耦合机理与智能算法的深度融合,以应对高比例可再生能源带来的复杂挑战。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]钱瞳,陈星宇,张文浩等.不确定风功率接入下电-气互联系统的协同经济调度[J].全球能源互联网,2020,3(06):582-589.DOI:10.19705/j.cnki.issn2096-5125.2020.06.005.