💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
以下是对格拉姆变换与并行网络CNN-Attention在故障诊断中应用的系统性分析,结合最新研究成果与技术实现:
一、格拉姆变换(Gram Transform)的技术原理
格拉姆变换是一种将一维时序信号编码为二维图像的方法,通过极坐标系映射保留信号的时间相关性与非线性特征,主要包含两种形式:
- 格拉姆角和场(GASF) :通过角度和的内积表示信号关系。
- 格拉姆角差场(GADF) :基于角度差的正弦函数构建矩阵,具有更强的表征能力。
数学实现步骤:
该变换能完整保留时间序列的时域信息,适合CNN处理图像数据的特性。
二、CNN-Attention模型的架构设计
CNN-Attention模型结合了卷积神经网络的特征提取能力与注意力机制的自适应加权特性,典型架构包括:
- CNN层:
- 使用卷积核提取局部特征(如边缘、纹理)。
- 池化层压缩数据维度,保留关键信息。
- 注意力层:
- 通道注意力(如SENet)增强重要通道的权重。
- 空间注意力(如CBAM)聚焦关键区域。
- 多头自注意力(Swin Transformer)捕捉长程依赖。
- 分类器:
- 全连接层将高维特征映射到故障类别,配合Softmax输出概率。
创新改进:
- 动态坐标注意力:在生成对抗网络(GAN)中引入空间感知能力,提升小样本诊断效果。
- 窗口注意力机制:通过局部窗口计算减少计算量,适配高分辨率图像。
三、并行网络结构的优势与实现
并行网络通过多分支协同处理,增强特征表达的全面性,主要实现方式包括:
1. 双模态并行
- 输入分支:同时处理不同信号(如振动与声学信号)或不同变换结果(如GADF与CWT图像)。
- 案例:使用GADF和连续小波变换(CWT)生成双通道图像,分别输入CNN和Swin Transformer分支,融合全局与局部特征。
2. 异构网络并行
- 架构设计:
- 一维CNN处理原始时序信号,二维CNN处理格拉姆图像。
- 双向LSTM(BiLSTM)捕捉时序依赖,注意力机制强化关键时间点。
- 案例:TSFFCNN模型采用1D-CNN与2D-CNN并行提取特征,融合后输入PSO-SVM分类器,准确率达99.37%。
3. 自适应特征融合
- 融合策略:
- 特征拼接(Concatenation)或加权平均。
- 动态调整分支权重(如梯度惩罚Wasserstein距离优化)。
- 优势:
- 提升模型对噪声的鲁棒性(如收缩机制减少冗余信息影响)。
- 增强跨域泛化能力,适应变工况场景。
四、结合应用的典型案例
案例1:GADF-CWT-GCNN模型
- 流程:
- 振动信号经GADF转换为图像,CWT生成时频图。
- 双分支CNN分别处理两类图像,融合后输入并行图卷积网络(GCNN)。
- 结果:6种负载条件下准确率超99%,小样本诊断性能优越。
案例2:Swin-CNN-GAM模型
- 创新点:
- Swin Transformer提取局部纹理特征。
- CNN-GAM模块强化全局空间相关性。
- 性能:50个epoch后准确率接近100%,混淆矩阵显示多类故障区分度显著。
案例3:并行CNN-Attention模型
- 改进:在格拉姆图像输入CNN的同时,原始信号经BiLSTM提取时序特征,注意力层融合两类特征。
- 优势:在CWRU数据集上准确率达97%,且收敛速度提升30%。
五、实验结果与性能对比
模型 | 数据集 | 准确率 | 创新点 | 文献来源 |
---|---|---|---|---|
GADF+ResNet50+Attention | CWRU轴承数据 | 99.2% | 注意力机制优化时空特征提取 | |
EfficientNet-B0-CBAM | 帕德博恩大学数据 | 98.04% | 轻量化设计+通道注意力 | |
P-FDRSN | 配电网故障数据 | 98.75% | 并行残差收缩网络抗噪声干扰 | |
TSFFCNN-PSO-SVM | 飞机起落架数据 | 99.37% | 双路CNN融合+PSO优化 |
六、未来研究方向
- 轻量化设计:结合知识蒸馏或剪枝技术,降低并行网络计算开销。
- 跨域迁移学习:利用预训练模型减少小样本场景下的数据需求。
- 多物理场融合:集成温度、电流等多源信号,提升诊断全面性。
- 可解释性增强:通过注意力权重可视化,分析故障敏感特征。
结论
格拉姆变换通过将一维信号编码为二维图像,有效结合CNN的图像处理能力;注意力机制与并行网络进一步强化了特征选择与多模态融合能力。当前研究在轴承、变压器、电网等领域已实现99%以上的诊断准确率,且在小样本、噪声干扰等复杂场景中表现优异。未来可通过轻量化、跨域迁移等技术进一步推动工业应用。
📚2 运行结果
格拉姆矩阵图像:
部分代码:
%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 150, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.001, ... % 初始学习率
'LearnRateDropFactor',0.01, ... % 学习率调整因子
'L2Regularization', 0.001, ... % 正则化参数
'ExecutionEnvironment', 'cpu',... % 训练环境
'Verbose', 1, ... % 关闭优化过程
'Plots', 'none'); % 画出曲线
% % start training
t0 = tic; %开始计时
net = trainNetwork(trainD,train_Y, layers0,options0 );
toc(t0); % 从t0开始到此处的执行时间
%% Accuracy assessment
pred = classify(net, testD);
pred = pred';
accuracy=sum(test_Y==pred)/length(pred); %计算预测的确率
% 标准bilstm作图
% 画方框图
figure
confMat = confusionmat(test_Y,pred); %test_Y是真实值标签
zjyanseplotConfMat(confMat.');
xlabel('Predicted label')
ylabel('Real label')
title(['测试集正确率 = ',num2str(accuracy*100),' %'])
% 作图
figure
scatter(1:length(pred),pred,'r^')
hold on
scatter(1:length(pred),test_Y,'b*')
legend('预测类别','真实类别','NorthWest')
title(['测试集正确率 = ',num2str(accuracy*100),' %'])
xlabel('预测样本编号')
ylabel('分类结果')
box on
set(gca,'fontsize',12)
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]李宗源,陈谦,钱倍奇,等.基于格拉姆角场与并行CNN的并网逆变器开关管健康诊断[J].电力自动化设备, 2024, 44(8):153-159.
[2]张国栋,尹 强,羊 柳.基于格拉姆角场和 PSO-CNN 的滚动轴承 故障诊断方法[J].Journal of Ordnance Equipment Engineering, 2024, 45(4).
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取