【状态估计】将Transformer和LSTM与卡尔曼滤波器结合到EM算法中进行状态估计(Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1. 研究背景与核心问题

2. 融合框架设计

2.1 整体架构

2.2 协同机制

3. 关键技术实现

3.1 Transformer与LSTM的协同

3.2 EM算法的角色

3.3 卡尔曼滤波器的改进

4. 实验验证与性能分析

4.1 典型应用场景

4.2 优势总结

5. 挑战与未来方向

5.1 当前局限性

5.2 未来研究方向

6. 结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及文章下载


💥1 概述

卡尔曼滤波器需要模型的真实参数,并递归地求解最优状态估计期望最大化(EM)算法适用于估计卡尔曼滤波之前不可用的模型参数,即EM-KF算法。为了提高EM-KF算法的准确性,作者提出了一种状态估计方法,该方法在序列到序列的编码器-解码器(seq2seq)框架下,将长-短期存储器网络(LSTM)、变压器和EM-KF方法相结合。对线性移动机器人模型的仿真表明,新方法更准确。

  • 卡尔曼滤波需要模型的真实参数,并递归求解最优状态估计。期望最大化(EM)算法适用于估计卡尔曼滤波前不可用的模型参数,即EM-KF算法。
  • 为了提高EM-KF算法的精度,该文在序列编码器-解码器(seq2seq)的框架中,结合长短期记忆网络(LSTM)、变压器和EM-KF算法,提出了一种状态估计方法。

我们在seq2seq中提出了用于状态估计的编码器-解码器框架,该状态估计等效于编码和解码观察。

  1. 之前将LSTM整合到KF的工作是采用LSTM编码器和KF 译码器。我们建议LSTM-KF采用LSTM编码器和EM-KF解码器。
  2. 在EM-KF解码器之前,用变压器编码器代替LSTM编码器,我们称之为 变压器-KF.
  3. 集成变压器和LSTM,我们称之为TL-KF。

集成变压器和LSTM在滤波前对观察进行编码,使EM算法更容易估计参数。

  1. 将Transformer和LSTM作为观测的编码器-解码器框架相结合,可以更有效地描述状态,衰减噪声干扰,削弱状态马尔可夫性质的假设和观测的条件独立性。这可以增强状态估计的精度和鲁棒性。
  2. 基于多头自注意和残余连接的变压器可以捕获长期依赖性,而LSTM编码器可以对时间序列进行建模。TL-KF是变压器、LSTM和EM-KF的组合,可用于参数未知的系统的状态估计。
  3. 卡尔曼平滑可以改善卡尔曼滤波,但在TL-KF中,滤波足够精确。因此,经过离线训练进行参数估计后,可以采用KF进行在线估计。

 

1. 研究背景与核心问题

传统卡尔曼滤波器(KF)依赖精确的系统模型参数(如状态转移矩阵、噪声协方差),但在实际应用中,这些参数可能未知或动态变化。期望最大化(EM)算法可通过迭代优化参数估计(M步)和状态估计(E步)解决这一问题,但其收敛速度和精度受限于参数初始化与模型假设。
深度学习模型(如LSTM和Transformer)具备强大的时序建模和非线性特征提取能力,但其黑盒特性难以直接与传统状态估计算法融合。因此,核心挑战在于如何构建协同框架,结合KF的递推滤波、EM的参数优化及深度学习的特征提取优势。


2. 融合框架设计

2.1 整体架构

Zhuangwei Shi(2021)提出的TL-KF框架(Transformer-LSTM-KF)是典型代表[1][34]:

  • 编码器-解码器结构
    • 编码器:由LSTM和Transformer组成,用于对观测序列进行特征提取。
  • LSTM:捕捉时间序列的短期依赖和动态变化[31][84]。
  • Transformer:通过自注意力机制建模长期依赖关系[6][197]。
    • 解码器:将编码后的特征映射为状态空间表示,供KF使用。
  • EM-KF算法
    • E步:基于当前参数估计,使用KF进行状态滤波/平滑。
    • M步:通过最大化似然函数,利用编码器输出的特征优化KF参数(如过程噪声协方差Q、观测噪声协方差R)[153][158]。
2.2 协同机制
  • 特征增强:LSTM和Transformer的联合编码削弱了对状态马尔可夫性和观测独立性的强假设,提升对噪声和非线性系统的鲁棒性[1][6]。
  • 参数自适应:EM算法通过迭代优化,将深度学习提取的隐含特征转化为KF的物理参数,实现模型自适应性[145][1]。
  • 离线-在线结合:离线阶段通过EM训练参数;在线阶段直接应用KF进行实时估计,降低计算复杂度[1]。

3. 关键技术实现

3.1 Transformer与LSTM的协同
  • 多头自注意力:捕获观测序列中的全局依赖关系,例如在电池健康状态(SOH)估计中,不同充放电阶段的关联性[20][37]。
  • 门控机制:LSTM的遗忘门和输入门动态调整信息流,适用于非平稳噪声环境(如电力系统负荷波动)[80][39]。
  • 残差连接:缓解梯度消失问题,提升编码器的深度特征提取能力[196][197]。
3.2 EM算法的角色
  • 参数初始化:通过深度学习编码器生成初始参数估计,避免传统EM对随机初始化的敏感性[158][1]。
  • 联合优化:在M步中,利用编码器输出的隐变量(如系统动态特性)优化KF参数,形成闭环反馈[145][153]。
3.3 卡尔曼滤波器的改进
  • 自适应噪声协方差:通过EM在线更新Q和R,应对时变噪声(如机动目标跟踪中的突发运动)[6]。
  • 平滑与滤波融合:部分研究中,KF平滑器与滤波器交替使用,结合历史与当前信息提升精度[31][169]。

4. 实验验证与性能分析

4.1 典型应用场景
  • 机器人状态估计:在线性移动机器人模型中,TL-KF的均方根误差(RMSE)较传统EM-KF降低约20%[1]。
  • 电池健康管理:结合Transformer编码器和LSTM的KF框架,在锂离子电池SOC/SOH联合估计中,误差小于1%[20][114]。
  • 目标跟踪:在GPS轨迹数据集上,注意力机制引导的KF参数自适应方法,精度优于传统模型驱动方法[6]。
4.2 优势总结
  • 精度提升:深度学习编码有效抑制噪声干扰,削弱模型假设限制[1][6]。
  • 鲁棒性增强:EM算法的参数自适应能力适应动态环境(如温度变化、电池老化)[20][37]。
  • 计算效率:离线训练后,在线KF滤波复杂度与经典方法相当[1]。

5. 挑战与未来方向

5.1 当前局限性
  • 模型复杂度:Transformer的高参数量可能导致训练耗时,需设计轻量化架构(如蒸馏技术)[80][145]。
  • 局部最优:EM算法易陷入局部最优,需结合全局优化策略(如遗传算法)[28][158]。
  • 实时性瓶颈:部分场景需权衡编码器深度与实时性要求(如自动驾驶中的毫秒级响应)[145][146]。
5.2 未来研究方向
  • 多模态融合:结合视觉、雷达等多源数据,扩展框架的输入维度[145][197]。
  • 可解释性增强:通过注意力权重可视化,分析LSTM/Transformer对状态估计的关键贡献[6]。
  • 迁移学习:设计跨场景参数迁移策略,提升模型泛化能力(如不同电池类型间的SOH估计)[37][114]。

6. 结论

将Transformer、LSTM与卡尔曼滤波器结合到EM算法中,通过编码器-解码器架构实现特征增强与参数自适应的闭环优化,显著提升了状态估计的精度与鲁棒性。未来研究需进一步解决模型复杂性与实时性矛盾,并探索跨领域应用的通用性框架。

📚2 运行结果

 

  

部分代码:

kft = KalmanFilter(
    A,C,Q,R,B,D,m0,P0,
    random_state=random_state
)# model should be
state, observation = kft.sample(
    n_timesteps=step,
    initial_state=m0
)# provide data
#filtered_state_estimatet, f_covt = kft.filter(observation)
#smoothed_state_estimatet, s_covt = kft.smooth(observation)

'''
Step 2: Initialize our model
'''

# specify parameters
transition_matrix = A
transition_offset = B
observation_matrix = C
observation_offset = D
transition_covariance = 0.02*np.eye(3)
observation_covariance = np.eye(1)
initial_state_mean =[0,0,1]
initial_state_covariance = 5*np.eye(3)

# sample from model

kf = KalmanFilter(
    transition_matrix, observation_matrix, transition_covariance,
    observation_covariance, transition_offset, observation_offset,initial_state_mean,initial_state_covariance,
    random_state=random_state,
    em_vars=[
      #'transition_matrices', 'observation_matrices',
      'transition_covariance','observation_covariance',
      #'transition_offsets', 'observation_offsets',
      'initial_state_mean', 'initial_state_covariance'
      ]
class TransformerBlock(nn.Module):
    """
    Bidirectional Encoder = Transformer (self-attention)
    Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
    """

    def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):
        """
        :param hidden: hidden size of transformer
        :param attn_heads: head sizes of multi-head attention
        :param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size
        :param dropout: dropout rate
        """

        super().__init__()
        self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden)
        self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)
        self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout)
        self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout)
        self.dropout = nn.Dropout(p=dropout)
        self.hidden = hidden

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

@article{shi2021kalman,
    author={Zhuangwei Shi}

🌈4 Matlab代码及文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值