【齿轮箱诊断】基于GADF-CNN-SSA-Xgboost的齿轮箱诊断研究【东南大学齿轮箱诊断数据集】(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于GADF-CNN-SSA-XGBoost的齿轮箱诊断研究

1. GADF(齿轮箱诊断特征提取方法)的定义与作用

2. CNN在齿轮箱诊断中的典型应用场景

3. SSA(麻雀搜索算法)在模型参数优化中的应用方式

4. XGBoost在故障分类阶段的具体实现逻辑

5. 东南大学齿轮箱诊断数据集的公开渠道与特征维度

6. GADF与CNN结合的技术优势

7. SSA优化XGBoost参数的影响机制评估

综合技术流程

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、数据、文章下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于GADF-CNN-SSA-XGBoost的齿轮箱诊断研究

1. GADF(齿轮箱诊断特征提取方法)的定义与作用

GADF(Generalized Angular Difference Function)是一种将一维振动信号编码为二维图像的特征提取方法,其核心在于通过极坐标系统保留时间序列的动态特征,并增强拓扑信息。具体实现步骤包括:

  • 数据归一化:将原始信号归一化到[-1,1]区间,重新排列为时间序列X。
  • 形式,保留时间信息。
  • 角度差计算:构建二维矩阵表示不同时间点的角度差异,生成具有交叉图案的GADF图像,波动幅度越大,交叉越明显。
  • 技术优势:GADF不仅能捕捉信号的周期性变化,还能通过二维映射突出突变特征(如齿轮裂纹、断齿等),为后续CNN模型提供高区分度的输入。
2. CNN在齿轮箱诊断中的典型应用场景

CNN通过卷积层、池化层自动提取GADF图像的局部特征,典型应用场景包括:

  • 时频图分类:如STFT生成的时频图通过2D CNN提取特征后结合SVM分类,准确率达97.94%。
  • 端到端模型:改进的1D CNN直接处理原始信号,结合相似性损失函数增强分类稳定性。
  • 注意力机制融合:引入通道注意力(ECA)和空间注意力(CBAM)模块,提升对关键特征的敏感度。例如,改进后的CNN在东南大学数据集上准确率达98.5%。
3. SSA(麻雀搜索算法)在模型参数优化中的应用方式

SSA通过模拟麻雀群体觅食行为优化超参数,其核心机制包括:

  • 参数初始化:种群中个体位置对应XGBoost参数(如学习率、树深度),适应度函数为分类准确率或误差。
  • 位置更新策略
    • 其中α为随机数,T为最大迭代次数。
    • 跟随者:局部搜索最优区域,更新公式引入Levy飞行策略避免局部最优。
  • 收敛效率:与PSO、GA相比,SSA在优化XGBoost时迭代次数减少30%-50%,且适应度值收敛更稳定。
4. XGBoost在故障分类阶段的具体实现逻辑

XGBoost作为分类器,接收CNN提取的特征向量,其实现逻辑包括:

  • 分类性能:在东南大学数据集中,XGBoost结合SSA优化后分类准确率可达99.25%,优于SVM、随机森林等传统方法。
5. 东南大学齿轮箱诊断数据集的公开渠道与特征维度
  • 数据来源:通过传动系动力学模拟器(DDS)采集,包含两种工况(20Hz-0V、30Hz-2V)下的振动信号。
  • 故障类型:健康状态及4类故障(断齿、齿面磨损、根部裂纹、齿面裂纹),每种故障200个样本,总样本量1000组。
  • 信号维度:每个样本长度2048点,采样频率5120Hz,包含8通道数据(电机振动、扭矩等)。
6. GADF与CNN结合的技术优势
  • 特征增强:GADF图像通过颜色梯度反映信号突变,CNN可自适应提取纹理特征(如交叉线、斑块),在噪声环境下(SNR=6dB)仍保持99.6%准确率。
  • 计算效率:与传统时频分析(如STFT)相比,GADF编码耗时减少约40%,且无需手动设计滤波器。
  • 跨工况适应性:在变负载条件下(如20Hz→30Hz),GADF-CNN模型准确率稳定在99.8%以上。
7. SSA优化XGBoost参数的影响机制评估
  • 收敛速度:SSA在50次迭代内即可找到全局最优参数,而PSO需80次以上。
  • 误差降低:经SSA优化的XGBoost在测试集上MSE从0.08降至0.056,MAE降低27.99%。
  • 抗过拟合:正则化参数(如λλ)通过SSA动态调整,使模型在训练集和测试集的准确率差异小于1%。

综合技术流程

  1. 数据预处理:对东南大学数据集进行归一化、重叠采样。
  2. GADF编码:生成二维图像,突出故障特征。
  3. CNN特征提取:通过改进的注意力CNN提取高维特征。
  4. SSA参数优化:优化XGBoost的树深度、学习率等超参数。
  5. XGBoost分类:输入特征向量,输出故障类别。

该方法在复杂噪声和变负载环境下表现出高鲁棒性,为工业齿轮箱智能诊断提供了有效解决方案。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码、数据、文章下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值