💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于分时电价响应和差异化需求侧资源标准建模的优化运行策略研究
💥1 概述
基于分时电价响应和差异化需求侧资源标准建模的优化运行策略研究
一、分时电价响应机制及其作用
分时电价(TOU)是一种基于时间差异的电价机制,通过将用电周期划分为峰、谷、平等时段,并以不同电价引导用户调整用电行为。其核心作用包括:
- 削峰填谷:高峰时段提高电价抑制需求,低谷时段降低电价刺激用电,有效平衡负荷曲线。例如,中国部分省份峰谷电价差距可达3-4倍,显著缓解电网压力。
- 新能源消纳:通过价格信号引导用户在光伏/风电出力高峰期增加用电,提升可再生能源渗透率。研究表明,TOU与储能协同可减少新能源弃电率15%以上。
- 用户行为重塑:长期稳定的TOU政策(通常持续数月)促使用户采用节能设备或调整生产时序。例如,工业用户通过错峰生产可降低电费支出8%-12%。
二、差异化需求侧资源建模方法
需求侧资源的异质性要求建立标准化模型以量化其调节能力,主要方法包括:
- 虚拟储能聚合模型(Virtual Storage, VS):
- 将电动汽车(EV)、空调(HVAC)等资源抽象为储能参数(功率/能量上下限、效率等),通过极端场景分析法生成灵活性边界。
- 例如,EV集群的VS模型参数包括最大充电功率pi,jEV maxpi,jEV max、最小电量ei,jEV min等。
- 数字孪生技术:
- 构建资源池的数字映射,解决传统建模中样本不足和调节成本高的问题。如华北电力大学团队开发的演化平台,可模拟用户响应行为的动态变化。
- 广义储能模型:
- 整合工业可中断负荷、电制氢等资源,采用Copula函数生成多源不确定性场景,支持鲁棒优化配置。江苏某案例显示,该方法减少储能投资成本23%。
三、协同优化运行策略框架
- 多目标优化模型:
- 目标函数:涵盖经济性(最小化用电成本)、稳定性(降低峰谷差)、环保性(减少碳排放)等维度。
- 约束条件:包括功率平衡、设备出力限制(如EV充电功率≤50kW)、用户舒适度(室内温度波动≤2℃)等。
- 算法选择:
- 混合整数规划(MIP) :适用于离散决策(如EV充放电状态),结合遗传算法(GA)处理双层优化问题。
- 深度强化学习(DRL) :通过MAPPO算法实现多时间尺度协同控制,例如在含高渗透率光伏的配电网中,电压偏差降低18%。
- 改进粒子群算法:引入动态惯性权重,解决动态TOU下的多目标调度问题,负荷峰谷差率减少25%。
四、典型应用案例
- 低压台区源荷互动(中国江西):
- 整合智能电表数据与问卷调查,构建异构居民负荷曲线,优化TOU时段划分。结果显示,峰谷时段调整后负荷波动降低30%。
- 高比例新能源系统(江苏2025-2031规划):
- 基于广义储能模型配置需求侧资源,减少储能投资12亿元,同时提升风电消纳率9%。
- 工业用户TOU优化(某汽车制造厂):
- 采用量子遗传算法制定分时电价,春/秋季节省电费0.88亿元,夏/冬季节省0.86亿元。
五、挑战与未来方向
- 用户响应异质性:需细分用户类型(工业/商业/居民),建立差异化弹性系数模型。例如,空调负荷响应速度为分钟级,而储能为秒级。
- 多时间尺度协同:日前优化与实时控制的衔接仍需改进,数字孪生技术有望解决跨尺度决策难题。
- 数据驱动建模:利用非参数概率预测和机器学习(如LSTM)提升风光出力与负荷预测精度。
六、结论
分时电价与差异化资源建模的协同优化是实现新型电力系统灵活性的关键。通过虚拟聚合、智能算法和多目标优化框架,可有效平衡经济性与稳定性。未来需进一步融合数字孪生、区块链等技术,构建用户侧资源全景感知体系,支撑“双碳”目标下的电网转型升级。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]吴宛潞,韩帅,郭小璇,等.计及空调负荷等多类型需求侧资源的虚拟电厂优化运行策略[J].电力需求侧管理, 2020, 22(1):5.DOI:CNKI:SUN:DLXQ.0.2020-01-005.
[2]郭丽云,宗毅,江岳文.计及需求侧响应的多源微电网优化运行[J].供用电, 2017, 34(12):7.DOI:10.19421/j.cnki.1006-6357.2017.12.002.
[3]曲欣瑶.基于分时电价的居民用户智能用电优化控制策略研究[D].浙江大学[2023-11-06].