图像处理100篇论文阅读(2012年-2017年)
文章平均质量分 92
https://mp.weixin.qq.com/s/ddTNr-967IahTZ2X1LNSEQ
2012到2017年计算机视觉领域的大事件:以论文和其他干货资源为主,并附上资源地址。
朽月初二
图像处理之目标检测、目标识别。
展开
-
(论文阅读 67-69)图像生成(卷积网络/循环网络)
67.改进pixel cnn(rnn)68.椅子生成 (多角度2D)69.DRAW(两个lstm)生成高真实感的自然图像原创 2023-11-23 10:59:53 · 96 阅读 · 0 评论 -
(论文阅读58-66)视频描述
60.3dcnn+cnn +lstm(一层 ) 61. rgb object cnn pretrained + optical flow action cnn pretrained +lstm(两层) 62.3dcnn+注意力机制原创 2023-11-22 10:42:31 · 94 阅读 · 0 评论 -
(论文阅读51-57)图像描述3 53
knn 加入高级语义 cnn精度提升好像对cnn+lstm这类图像描述无贡献。原创 2023-11-20 11:37:01 · 225 阅读 · 0 评论 -
(论文阅读46-50)图像描述2
cnn+lstm+注意力机制、用句子代替单词进行描述、用新加的少量样本对新概念进行学习。原创 2023-11-18 19:11:56 · 351 阅读 · 0 评论 -
(论文阅读40-45)图像描述1
使用自然语言描述图像,基本使用的是cnn提取图像特征+lstm处理语言特征然后使用多模态层输出对应图片相应的描述句子。比较有趣的是一张图内的密集目标,还有视频目标检测。原创 2023-11-17 10:38:12 · 594 阅读 · 0 评论 -
(论文阅读34-39)理解CNN
理解cnn、添加图片噪声发现cnn不太好识别,遮挡图片部分得到图片特征重要性分布;通过提取出来的特征反演图像....sift、hog、cnn。原创 2023-11-15 17:04:32 · 184 阅读 · 0 评论 -
(论文阅读28-33)人体姿态估计
人体姿态——检测关键点以及置信度、关键点连线 31.沙漏型网络 32.光流法结合邻近帧原创 2023-11-13 16:50:06 · 151 阅读 · 0 评论 -
(论文阅读26-27)对象识别
26.不使用bounding boxes进行图像标注,而是直接标注图像中有什么。弱监督学习弱在这里。cnn变成全卷积网络进行训练,图像中有多个物体,可以大概定位到物体位置。原创 2023-11-13 10:28:32 · 558 阅读 · 0 评论 -
(论文阅读20-25)物体跟踪
20.offline cnn+online svm 21.cnn 22.试图结合生成性跟踪器和判别性跟踪器的思想,开发一个鲁棒的判别性跟踪器。23.使用CNNs分层层的特征而不是仅使用最后一层来表示目标。 24.在追踪过程中根据干扰项的出现自动选择这两层(顶层和底层)25.具有少量层的CNN原创 2023-11-09 16:35:41 · 87 阅读 · 0 评论 -
(论文阅读7-19)目标检测
公式求取的感受野通常很大,而实际的有效感受野往往小于理论感受野,因为输入层中边缘点的使用次数明显比中间点要少,因此作出的贡献不同,所以经过多层的卷积堆叠后,输入层对于特征图点做出的贡献分布呈高斯分布形状。其中,反卷积是一种常用的上采样方法,它通过卷积操作将低分辨率的特征图转换为高分辨率的特征图。Bounding box regression是受DPM算法的启发的,它通过训练一个线性回归模型,给予一组特征(CNN提取的特征),来预测一个新的检测框,这个新框的偏移量是这个Regression预测的目标。原创 2023-10-20 10:30:10 · 84 阅读 · 0 评论 -
(论文阅读1-6)基本网络架构及知识
1.深度残差网络、目标函数变为F(x)=H(x)-x; 2.PReLU 3.BN批量归一化 4.Inception 网络结构 5.Vgg16 6.AlexNet 2012原创 2023-10-10 09:21:55 · 58 阅读 · 1 评论