文章目录
什么是ShardingSphere-JDBC?
- 它使用客户端直连数据库,以jar包形式提供服务
- 无需额外部署和依赖,可理解为增强版的JDBC 驱动,完全兼容JDBC和各种ORM框架,如:JPA,Hibernate,Mybatis,或直接使用JDBC
- 支持任何第三方的数据库连接池,如:DBCP,C3P0,BoneCP,HikariCP 等;
- ⽀持任意实现 JDBC规范的数据库,目前支持MySQL,PostgreSQL,Oracle,SQLServer 以及任何可使用 JDBC访问的数据库
- 采用无中心化架构,与应用程序共享资源,适用于 Java 开发的高性能的轻量级 OLTP 应用
Sharding-Jdbc常见概念术语
数据节点Node
数据分片的最小单元,由数据源名称和数据表组成
比如:ds_0.product_order_0(某个库中的某个表)
真实表
在分片的数据库中真实存在的物理表
比如订单表 product_order_0、product_order_1、product_order_2
逻辑表
水平拆分的数据库(表)的相同逻辑和数据结构表的总称
比如订单表 product_order_0、product_order_1、product_order_2,逻辑表就是product_order
绑定表
指分片规则⼀致的主表和子表
比如product_order表和product_order_item表,均按照order_id分片,则此两张表互为绑定表关系
绑定表之间的多表关联查询不会出现笛卡尔积关联,关联查询效率将大大提升
广播表
指所有的分片数据源中都存在的表,表结构和表中的数据在每个数据库中均完全⼀致
适用于数据量不⼤且需要与海量数据的表进⾏关联查询的场景,例如:字典表、配置表
数据库表分片(水平库、表)
包含分片键和分片策略
分片键 (PartitionKey)
⽤于分片的数据库字段,是将数据库(表)水平拆分的关键字段,比如prouduct_order订单表,根据订单号 out_trade_no做哈希取模,则out_trade_no是分片键
除了对单分片字段的支持,ShardingSphere也⽀持根据多个字段进行分片(多分片键)
行表达式分片策略 InlineShardingStrategy(必备)
只支持【单分片键】使用Groovy的表达式,提供对SQL语句中的=
和IN
的分片操作支持
可以通过简单的配置使用,无需自定义分片算法,从而避免繁琐的Java代码开发
prouduct_order_$->{user_id % 8}
表示订单表根据user_id模8,⽽分成8张表,表名称为prouduct_order_0
到prouduct_order_7
标准分片策略StandardShardingStrategy(需了解)
- 只支持【单分片键】,提供PreciseShardingAlgorithm和RangeShardingAlgorithm两个分片算法
- PreciseShardingAlgorithm 精准分片是必选的,用于处理
=
和IN
的分片 - RangeShardingAlgorithm 范围分配是可选的,用于处理
BETWEEN AND
分片 - 如果不配置RangeShardingAlgorithm,如果SQL中用了
BETWEEN AND
语法,则将按照全库路由处理,性能下降
复合分片策略ComplexShardingStrategy(需了解)
⽀持【多分⽚键】,多分片键之间的关系复杂,由开发者自己实现,提供最大的灵活度
提供对SQL语句中的=
, IN
和BETWEEN AND
的分片操作支持
Hint分片策略HintShardingStrategy(需了解)
- 这种分片策略无需配置分片健,分片健值也不再从 SQL中解析,外部⼿动指定分片健或分片库,让 SQL在指定的分库、分表中执行
- 用于处理使用Hint行分片的场景,通过Hint而非SQL解析的方式分片的策略
- Hint策略会绕过SQL解析的,对于这些比较复杂的需要分片的查询,Hint分片策略性能可能会更好
不分片策略 NoneShardingStrategy(需了解)
不分片