PTA 7-83 币值转换 (20分)(C语言版)

7-83 币值转换 (20分)

输入一个整数(位数不超过9位)代表一个人民币值(单位为元),请转换成财务要求的大写中文格式。如23108元,转换后变成“贰万叁仟壹百零捌”元。为了简化输出,用小写英文字母a-j顺序代表大写数字0-9,用S、B、Q、W、Y分别代表拾、百、仟、万、亿。于是23108元应被转换输出为“cWdQbBai”元。

输入格式:

输入在一行中给出一个不超过9位的非负整数。

输出格式:

在一行中输出转换后的结果。注意“零”的用法必须符合中文习惯。

输入样例1:
813227345

输出样例1:
iYbQdBcScWhQdBeSf

输入样例2:
6900

输出样例2:
gQjB

#include<stdio.h>
 int main(){
 	int n;
 	scanf("%d",&n);
 	int i;
 	int k=1;
 	int t=n;
 	while(t>0){
 		t/=10;
 		i++;
 		k*=10;
 	    }
	 i++;
 	k=k/10;

 	int j;
 	int s;
	for(j=1;n>0;j++){
		s=n/k;
	switch(s){
		case 0:printf("a"); goto show;
		case 1:printf("b"); goto show;
		case 2:printf("c"); goto show;
		case 3:printf("d"); goto show;
		case 4:printf("e"); goto show;
		case 5:printf("f"); goto show;
		case 6:printf("g"); goto show;
		case 7:printf("h"); goto show;
		case 8:printf("i"); goto show;
		case 9:printf("j"); goto show;
		   }
		show:
		n=n%k;
		k/=10;
		i--;
	
		switch(i){
			case 9:if(s!=0)	printf("Y"); continue;
			case 8:if(s!=0) printf("Q");continue;
			case 7:if(s!=0) printf("B");continue;
			case 6:if(s!=0) printf("S");continue;
			case 4:if(s!=0) printf("Q");continue;
			case 3:if(s!=0) printf("B");continue;
			case 2:	if(s!=0) printf("S");
		
		}
		}
        } 
以下是一元多项式的加法 C 语言代码: ```c #include <stdio.h> #include <stdlib.h> typedef struct node { int coef; // 系数 int exp; // 指数 struct node *next; } Node; Node *createNode(int coef, int exp) { Node *newNode = (Node *)malloc(sizeof(Node)); newNode->coef = coef; newNode->exp = exp; newNode->next = NULL; return newNode; } Node *addPoly(Node *poly1, Node *poly2) { Node *head = createNode(0, 0); Node *p = head; while (poly1 && poly2) { if (poly1->exp > poly2->exp) { p->next = createNode(poly1->coef, poly1->exp); poly1 = poly1->next; } else if (poly1->exp < poly2->exp) { p->next = createNode(poly2->coef, poly2->exp); poly2 = poly2->next; } else { int sum = poly1->coef + poly2->coef; if (sum != 0) { p->next = createNode(sum, poly1->exp); } poly1 = poly1->next; poly2 = poly2->next; } p = p->next; } p->next = poly1 ? poly1 : poly2; return head->next; } void printPoly(Node *poly) { while (poly) { printf("%dx^%d", poly->coef, poly->exp); if (poly->next && poly->next->coef > 0) { printf("+"); } poly = poly->next; } printf("\n"); } int main() { int n, coef, exp; Node *poly1 = createNode(0, 0); Node *poly2 = createNode(0, 0); scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%d%d", &coef, &exp); Node *node = createNode(coef, exp); node->next = poly1->next; poly1->next = node; } scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%d%d", &coef, &exp); Node *node = createNode(coef, exp); node->next = poly2->next; poly2->next = node; } Node *sum = addPoly(poly1->next, poly2->next); printPoly(sum); return 0; } ``` 在这个代码中,我们首先定义了一个结构体 `Node` 来存储一元多项式中的每一项。其中,`coef` 表示系数,`exp` 表示指数,`next` 表示指向下一项的指针。 然后,我们通过 `createNode` 函数来创建一个新的节点,并将 `coef` 和 `exp` 初始化为指定的值。 接下来,我们定义了一个 `addPoly` 函数来实现多项式的加法。该函数输入两个多项式的头节点指针 `poly1` 和 `poly2`,并返回一个新的多项式的头节点指针。 在 `addPoly` 函数中,我们先创建一个新的头节点 `head`,然后使用指针 `p` 指向 `head`,依次遍历 `poly1` 和 `poly2` 中的每一项,将它们相加并存储在一个新的节点中,将该节点插入到新多项式的尾部。最后,将剩余的多项式直接连接到新多项式的尾部。 最后,我们定义了一个 `printPoly` 函数来输出一元多项式,然后在 `main` 函数中读入两个多项式,并调用 `addPoly` 函数来求和,最后输出结果。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值