状态压缩解决N皇后问题

文章介绍了如何运用状态压缩和位运算优化解决经典的八皇后问题,通过避免暴力搜索来提高效率。在N皇后问题中,作者提出了一种方法,通过计算当前行可以摆放皇后的列,并利用位运算更新对角线的影响,然后进行深度优先搜索(DFS)来寻找解决方案。
摘要由CSDN通过智能技术生成

复习面经之n皇后问题

八皇后问题

经典八皇后问题大概是说8*8的国际象棋棋盘上,如果同行或者同列或者同对角线上存在多个皇后 则它们会互相攻击,求在棋盘上和平的摆上八个皇后的方案数。

推广至N皇后

这里以前一直是使用暴力搜索解决的

然后最近想到可以用状态压缩来解决,就有了这篇文章

使用状态压缩可以通过位运算减少遍历数组所带来的消耗,理解起来也更简洁
首先在处理状态压缩需要用到位运算的知识,这里不多概述,只会解释所用到的。

上代码

void dfs(int Col, int mainDiag, int contDiag) {
    if (Col == (1 << n) - 1) {
        ans++;
        return;
    }
    //求当前行可以摆放皇后的列
    //三个参数中各位上的1表示不可摆放 先或再取反则表示整个棋盘上1为可以摆放的位置
    //前面那一串表示所有位置都可以摆放
    int colCan = (((1 << n) - 1))&(~(Col|mainDiag|contDiag));
	//从后往前遍历所有可摆位置
    while (colCan) {
        //试探在col列上摆放上皇后 col为最右边的可拜访位置
        //这里的式子是lowbit的公式 计算最低位的1的位置
        int col = (colCan & (~(colCan)+1));
        //将摆完位置置0
        colCan &= (~col);
        
        //三个参数中新增的1的位置表示对下一行的影响
        //col为对当前列  后面两个都是记录对角线所以下一行是当前列的两边不可摆放
        dfs(Col | col, (mainDiag | col) >> 1, (contDiag | col) << 1);
    }

}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值