在看文献时想到的一些关于植物检疫监测预警系统的个人想法

植物检疫监测预警系统

最近看论文想到的一个点子,本科时候学的是检疫,虽然后面转行了,但是看到一些论文时候,有时候还是会想到,把这些东西用到检疫上会怎么样呢?


前提的文献:

论文1: Generating digital elevation model from farm fields using smartphone
摘要:近年来,农业部门的生产力和效率一直是重要问题。有用的信息有助于改进耕作程序。土地是农业的重要组成部分。因此,大量精确的土地信息对改善农业生产具有重要影响。土地的地理空间产品提供了有用的信息。数字高程模型(DEM)是一种重要的地理空间产品。DEM 通常是利用立体卫星或地形图或雷达设备生成的,而这些设备并不公开。因此,本文提出了一个移动应用程序,利用智能手机的功能生成 DEM。在该应用程序中,用户将被引导从土地的指定点采集所需的样本。然后,使用一些估算和插值算法精确生成 DEM。该应用程序的结果,如 DSM、利用倾角方向生成的高程和利用倾角生成的坡度,会以三层叠加的形式显示在地图上。DEM 的质量是通过外部方法使用实验中获取的地面控制数据进行评估的。结果显示,开发的应用程序提供的 DEM 均方根误差为 0.33,这表明生成的 DEM 是理想的,可用于多项工程分析。

论文2: Geographic-Scale Coffee Cherry Counting with Smartphones and Deep Learning
摘要:利用遥感和无人机进行深度学习和计算机视觉,是植物监测和表型分析的两种前景广阔的非破坏性方法。然而,对于许多树冠下的作物系统(如咖啡作物)来说,这些方法的应用并不可行,因此以较低成本在大空间尺度上进行植物监测和表型分析具有挑战性。本研究旨在开发一种咖啡樱桃计数的地理尺度监测方法,并辅以人工智能(AI)驱动的公民科学方法。该方法使用基本的智能手机拍摄几张咖啡树的照片;2022 年,在近 1000 名小农咖啡种植者的帮助下,我们在胡宁和皮乌拉(秘鲁)、考卡和金迪奥(哥伦比亚)用 8904 张照片调查了 2968 棵咖啡树。然后,我们对 YOLO(You OnlyLook Once)v8 进行了训练和验证,以检测秘鲁数据集中的樱桃。每张图片上樱桃的平均数量乘以树枝的数量,就能估算出每棵树上樱桃的总数。该模型在秘鲁的 R2 值为 0.59。在哥伦比亚进行测试时,模型的 R2 为 0.71,因为哥伦比亚的不同品种生长在不同的生物地理气候条件下。这两个国家的总体性能 R2 都达到了 0.72。结果表明,该方法可应用于更广泛的范围,并可转移到其他品种、国家和地区。据我们所知,这是第一种人工智能驱动的咖啡樱桃计数方法,有可能对全球低收入国家的咖啡作物进行地理尺度、多年期、基于照片的表型监测。

  • 两篇论文的共同点:
    都使用了手机,获取特定位置的信息

  • 两篇论文的差异:
    第一篇论文在于使用手机获取位置的高程、地理坐标信息
    第二篇论文在于使用手机拍摄的图片,进行深度学习


植物检疫:

关于植物检疫,可参考如下的论文,了解大致情况:
论文: 近年我国农业植物检疫疫情新发形势分析
论文: 2010年—2022年我国农业植物检疫性有害生物发生防控形势分析

总体而言,植物检疫活动在我国目前形势较为严峻


个人想法:

开发一个利用智能手机和深度学习进行地理尺度的入侵植物监测的小程序,其运行逻辑为:

  1. 首先用户发现一株入侵植物后,使用小程序拍摄该植物,拍摄时需要确定拍摄地点类型,如果是室内则不需要获取地里坐标,如果为野外则获取地理坐标;
  2. 由用户在拍摄的图片上手动框出目标植物,并确定是哪种入侵植物(这一步是一个较长的开发过程,开始只能由人为进行框选,之后在前期的框选图片数量足够多以后,则可以使用深度学习模型进行一个初始的自动框选识别,接着由人为进行判断是否正确);
  3. 将拍摄好,并框选好的图片上传到服务器进行存储;
  4. 将保存有地理位置的图片及其拍摄的入侵植物在地理信息系统上进行分析,确定某种入侵植物的蔓延过程,侵袭程度等,后期也可进行环境对该种植物入侵的影响等一系列过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值