目录
介绍
这里除了继续使用普通随机森林和提升树模型的回归器版本之外,还要补充介绍随机森林模型的另-一个变种:极端随机森林( Extremely RandomizedTrees)。与普通的随机森林(RandomForests)模型不同的是,极端随机森林在每当构建一棵树的分裂节点(node)的时候,不会任意地选取特征;而是先随机收集一部 分特征,然后利用信息熵(Information Gain)和基尼不纯性(Gini Impurity)等指标挑选最佳的节点特征。
美国波士顿地区房价预测
这里我们利用前一篇文章Python回归预测汇总-线性回归(实例:美国波士顿地区房价预测)的数据继续进行支持向量机集成模型回归预测。
预测
from sklearn.ensemble import RandomForestRegressor,ExtraTreesRegressor,GradientBoostingRegressor
rfr=RandomForestRegressor()
rfr.fit(x_train,y_train)
rfr_y_pred=rfr.predict(x_test)
etr=ExtraTreesRegressor()
etr.fit(x_train,y_train)
etr_y_pred=etr.predict(x_test)
gbr=GradientBoostingRegressor()
gbr.fit(x_train,y_train)
gbr_y_pred=etr.predict(x_test)
性能测评
#模型自带评估模块
print("正确率为:\n",rfr.s

本文介绍了Python中的集成模型,如随机森林和极端随机森林,用于预测美国波士顿地区的房价。通过对比分析,展示了集成模型在性能和稳定性上的优势。
最低0.47元/天 解锁文章
917

被折叠的 条评论
为什么被折叠?



