Python回归预测汇总-集成模型(实例:美国波士顿地区房价预测)

本文介绍了Python中的集成模型,如随机森林和极端随机森林,用于预测美国波士顿地区的房价。通过对比分析,展示了集成模型在性能和稳定性上的优势。

介绍

这里除了继续使用普通随机森林和提升树模型的回归器版本之外,还要补充介绍随机森林模型的另-一个变种:极端随机森林( Extremely RandomizedTrees)。与普通的随机森林(RandomForests)模型不同的是,极端随机森林在每当构建一棵树的分裂节点(node)的时候,不会任意地选取特征;而是先随机收集一部 分特征,然后利用信息熵(Information Gain)和基尼不纯性(Gini Impurity)等指标挑选最佳的节点特征。

美国波士顿地区房价预测

这里我们利用前一篇文章Python回归预测汇总-线性回归(实例:美国波士顿地区房价预测)的数据继续进行支持向量机集成模型回归预测。

预测

from sklearn.ensemble import RandomForestRegressor,ExtraTreesRegressor,GradientBoostingRegressor
rfr=RandomForestRegressor()
rfr.fit(x_train,y_train)
rfr_y_pred=rfr.predict(x_test)

etr=ExtraTreesRegressor()
etr.fit(x_train,y_train)
etr_y_pred=etr.predict(x_test)

gbr=GradientBoostingRegressor()
gbr.fit(x_train,y_train)
gbr_y_pred=etr.predict(x_test)

性能测评

#模型自带评估模块
print("正确率为:\n",rfr.s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值