03控制系统描述方法相互转换方法(1)

本文详细介绍了控制系统中动态方程与传递函数的相互转换,包括连续和离散情况下的转换方法,以及离散化处理(如有限差分法)以适应计算机仿真。重点讲述了拉普拉斯变换和Z变换在连续和离散系统中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

后续陆续更新:传递函数讲解、工作点线性化、系统辨识、LMS

在这里插入图片描述

控制系统的基本描述方法有动态方程、传递函数、状态方程三种。

而各种描述方法之间如何相互转换的方法也有很多。

而为了更好地进行计算机仿真,则需将控制系统离散化。

下一一介绍控制系统描述方法之间的转换以及各自离散化方法。

一、动态方程与传递函数相互转换

经典控制理论中,借助积分变换引入的传递函数模型,可以很好地描述系统输入输出特性。

1.连续情况

1)动态方程→传递函数

借助于如下一中积分变换(拉普拉斯变换)以及相关的性质,可将一个有参数实数 t ( t ≥ 0 ) t(t≥ 0) tt0 的函数转换为一个参数为复数 s s s 的函数。(后续有时间应该会详细介绍以下积分变换)
F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t F(s)=\int_{0}^{\infty}f(t)e^{-st}dt F(s)=0f(t)estdt

一般单输入单输出的控制系统,其动态方程可以用如下高阶微分方程描述,
a n y n + a n − 1 y n − 1 + . . . + a 1 y = b m u m + b m − 1 u m − 1 + . . . + b 1 u a_ny^n+a_{n-1}y^{n-1}+...+a_1y=b_mu^m+b_{m-1}u^{m-1}+...+b_1u anyn+an1yn1+...+a1y=bmum+bm1um1+...+b1u

在零初始条件下,对上式进行拉普拉斯变换,可得到在参数为复数 s s s 下的输出和输入之间的关系
a n Y ( s ) s n + a n − 1 Y ( s ) s n − 1 + . . . + a 1 Y ( s ) = b m U ( s ) s m + b m − 1 U ( s ) s m − 1 + . . . + b 1 U ( s ) a_nY(s)s^n+a_{n-1}Y(s)s^{n-1}+...+a_1Y(s)=b_mU(s)s^m+b_{m-1}U(s)s^{m-1}+...+b_1U(s) anY(s)sn+an1Y(s)sn1+...+a1Y(s)=bmU(s)sm+bm1U(s)sm1+...+b1U(s)
G ( s ) = Y ( s ) U ( s ) = b m s m + b m − 1 s m − 1 + . . . + b 1 a n s n + a n − 1 s n − 1 + . . . + a 1 G(s)=\frac{Y(s)}{U(s)}=\frac{b_ms^m+b_{m-1}s^{m-1}+...+b_1}{a_ns^n+a_{n-1}s^{n-1}+...+a_1} G(s)=U(s)Y(s)=ansn+an1sn1+...+a1bms

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

执迷、不悔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值