chaser&upper
西电CS研究生,CSDN专家博主&人工智能领域优质创作者,全网粉丝20w+,热爱生活,喜欢分享,欢迎您与我交流!商务合作,请私信沟通。
展开
-
【代码详解】from sklearn.pipeline import make_pipeline c = make_pipeline(vectorizer, rf)
代码片段使用 sklearn.pipeline 中的 make_pipeline 函数创建一个管道(Pipeline),将先前定义的 vectorizer(TfidfVectorizer 实例)与一个未明确指定的 rf 变量连接起来。,这段代码构建了一个 sklearn 管道,将文本向量化(TfidfVectorizer)与一个未明确指定但假设存在的机器学习模型(rf)结合在一起,形成一个端到端的数据处理和预测流程。管道是一种将多个预处理步骤和最终模型串联在一起的数据处理流程,使得整个工作流可以作为一个。原创 2024-04-26 13:16:53 · 163 阅读 · 0 评论 -
【代码详解】sklearn.feature_extraction.text.TfidfVectorizer(lowercase=False)
同样地,newsgroups_test 是 fetch_20newsgroups 函数返回的 Bunch 对象,其 .data 属性包含新闻组数据集的测试文本。生成的 test_vectors 也是一个稀疏矩阵,结构与 train_vectors 相同,确保了训练集和测试集在特征空间上的统一性。newsgroups_train 是一个假设已经准备好的 sklearn.datasets.fetch_20newsgroups 函数返回的 Bunch 对象,其中 .data 属性包含新闻组数据集的训练文本。原创 2024-04-26 13:04:28 · 118 阅读 · 0 评论 -
详细解释Python代码:np.genfromtxt(path_to_csv, dtype=str, delimiter=‘,‘, skip_header=0)
函数执行后,返回一个二维NumPy数组arr,其中每一行代表CSV文件中的一条记录,每一列则对应一个字段。由于指定了dtype=str,数组中的每个元素都是字符串类型。提供的代码片段使用了NumPy库中的genfromtxt函数来从CSV文件中读取数据并存储到一个名为arr的数组中。是NumPy提供的一个用于从。原创 2024-04-16 15:43:17 · 199 阅读 · 0 评论 -
Jupyter notebook更换炫酷主题、更改字体大小以及开启代码补全
如果你使用的是360系列浏览器,同样可以使用缩放功能(快捷键为"Ctrl +")更改显示大小,对于网页的主题背景,使用的可以更改网页更改配色的插件为Midnight Lizard。)来更改背景颜色,通过缩放浏览器比例(快捷键为"Ctrl +")来更改 Jupyternotebook 的字体大小和显示大小。这种更改主题方式的效果比初始效果要好一点,同时与初始效果相似度较高,不影响使用和美观程度。接下来刷新:(通常是Ctrl + F5或Cmd + Shift + R)库更改Jupyter主题。原创 2024-04-16 13:19:17 · 1166 阅读 · 0 评论 -
Colab工具运行python文件
还有就是可能还需要安装一些包,直接使用!pip install 包名称 即可。如果.py文件还有一些超参数设置,直接加在后面即可。记得要在笔记本设置里使用GPU加速。原创 2023-09-19 19:23:35 · 894 阅读 · 1 评论 -
【解决】安装Pycharm双击打不开,是卸载不干净吗?
最近重装完系统后,pycharm无法打开,重新安装其他版本后,双击无法启动。原创 2023-06-13 10:02:44 · 1165 阅读 · 0 评论 -
AttributeError: ‘DataFrame‘ object has no attribute ‘as_matrix‘
第一次改为了.values():.values,它是dataframe类对象的一个属性,不是方法。原创 2023-02-09 19:29:49 · 1368 阅读 · 1 评论 -
详解Python的codecs模块
总结一下,codecs模块为我们解决的字符编码的处理提供了lookup方法,它接受一个字符编码名称的参数,并返回指定字符编码对应的encoder、decoder、StreamReader和StreamWriter的函数对象和类对象的引用。为了简化对lookup方法的调用, codecs还提供了getencoder(encoding)、getdecoder(encoding)、getreader(encoding)和 getwriter(encoding)方法;进一步,简化对特定字符编码的。原创 2023-02-04 11:35:41 · 2654 阅读 · 0 评论 -
PyCharm 终端更换虚拟环境
【代码】PyCharm 终端更换虚拟环境。原创 2023-01-14 14:03:26 · 6881 阅读 · 4 评论 -
【Python高级】详解 正则表达式(re模块)
在实际开发过程中经常会有查找符合某些复杂规则的字符串的需要,比如:邮箱、图片地址、手机号码等,这时候想匹配或者查找符合某些规则的字符串就可以使用正则表达式了。在Python中需要通过正则表达式对字符串进行匹配的时候,可以使用一个 re 模块# 导入re模块 import re # 使用match方法进行匹配操作 result = re . match(正则表达式 , 要匹配的字符串) # 如果上一步匹配到数据的话,可以使用group方法来提取数据 result . group()原创 2023-01-08 21:43:56 · 345 阅读 · 0 评论 -
【Python高级】详解 深拷贝和浅拷贝
浅拷贝使用copy.copy函数深拷贝使用函数不管是给对象进行深拷贝还是浅拷贝,只要拷贝成功就会开辟新的内存空间存储拷贝的对象。浅拷贝和深拷贝的区别是:浅拷贝最多拷贝对象的一层,深拷贝可能拷贝对象的多层。加油!努力!原创 2023-01-08 20:40:54 · 1529 阅读 · 0 评论 -
【Python高级】 生成器的创建方式
根据程序员制定的规则循环生成数据,当条件不成立时则生成数据结束。数据不是一次性全部生成处理,而是使用一个,再生成一个,可以节约大量的内存。原创 2023-01-08 20:33:12 · 259 阅读 · 0 评论 -
【Python高级】详解with语句和上下文管理器
【Python高级】详解with语句和上下文管理器原创 2023-01-08 11:15:48 · 328 阅读 · 2 评论 -
【html2text-命令行脚本】Python之html与markdown互相转换
【html2text·命令行脚本】Python之html与markdown互相转换前言批处理代码命令行脚本代码前言遇到大佬博客里的表格内容,复制html代码下来发现在Markdown里面无法正常显示,因此考虑下载.html文件,然后将.html文件转为.md文件,这样问题就能解决。批处理代码当想处理的文件过多时,批处理能大大方便我们的使用!完整参考:Python之html与markdown互相转换命令行脚本代码"""@Author: ZS@CSDN : https://zsyll.blo原创 2022-01-22 20:45:01 · 1214 阅读 · 0 评论 -
【数据结构】Python与栈的爱恨情仇
【数据结构】Python与栈的爱恨情仇1. 栈的概念2. 栈的列表实现3. 栈的简洁实现3.1 list3.2 collections.deque3.3 queue module3.4 pythonds.basic.stack4. 栈的应用4.1 中缀表达式转换为后缀表达式4.2 后缀表达式计算4.3 回溯算法4.4 十进制转换为二进制1. 栈的概念栈是线性的集合,其中,访问都严格的限制在一端,也叫作顶(top)。栈是遵从后进先出(LIFO)的协议,从栈放入项和从栈删除项的操作分别叫压人(push)和原创 2022-01-12 21:21:06 · 376 阅读 · 0 评论 -
【超好用】Visual Studio Code 配置Python环境
Visual Studio Code 配置Python环境前言1. 终端运行 Python2. 安装 Python 插件3. 查看/安装外部库4. 代码补全工具5. 代码检查工具5.1 pylint5.2 flake85.3 yapf前言突然发现VSCode挺强大的,用着挺好用的,至少比Pycharm启动速度快,而且方便切换环境。下载最新的版本:https://code.visualstudio.com/ 为什么要用 VS Code?用 PyCharm 不好吗?VS Code 是开源免费的,Py原创 2022-01-11 18:58:27 · 21377 阅读 · 0 评论 -
Python 输入一行以空格分开的数字求和
Python输入一行以空格分开的数字求和sum(map(int, input().split()))input():输入一行字符串.split():以空格进行切分map():映射函数,对列表每一个元素应用某一操作(map(int, input().split()):对一个字符数字转化为整数)sum():对列表中所有数字求和...原创 2022-01-07 19:46:58 · 4856 阅读 · 0 评论 -
【Python高级】property属性详解
property属性property属性1. property属性的介绍2. 装饰器方式3. 类属性方式4. 小结property属性能够知道装饰器方式的property属性的定义方式1. property属性的介绍property属性就是负责把一个方法当做属性进行使用,这样做可以简化代码使用。定义property属性有两种方式装饰器方式类属性方式2. 装饰器方式class Student(object): def __init__(self): # 私有原创 2022-01-01 21:07:03 · 365 阅读 · 3 评论 -
【Python进阶】装饰器(Decorator)
装饰器(Decorator)装饰器1. 装饰器的定义2. 装饰器的示例代码3. 装饰器的语法糖写法4. 小结装饰器的使用1. 装饰器的使用场景2. 装饰器实现已有函数执行时间的统计2. 小结通用装饰器的使用1. 装饰带有参数的函数2. 装饰带有返回值的函数3. 装饰带有不定长参数的函数装饰器学习目标能够知道定义装饰器的语法格式1. 装饰器的定义就是 给已有函数增加额外功能的函数,它本质上就是一个闭包函数。装饰器的功能特点:不修改已有函数的源代码不修改已有函数的调用方式给已有函数增加原创 2021-12-30 10:11:43 · 710 阅读 · 0 评论 -
【Python进阶】闭包(Closure)
【Python进阶】闭包闭包1. 闭包的介绍2. 闭包的构成条件3. 简单闭包的示例代码4. 闭包的作用5. 小结6. 实例代码闭包学习目标能够知道闭包的构成条件能够知道定义闭包的语法格式1. 闭包的介绍我们前面已经学过了函数,我们知道当函数调用完,函数内定义的变量都销毁了,但是我们有时候需要保存函数内的这个变量,每次在这个变量的基础上完成一些列的操作,比如: 每次在这个变量的基础上和其它数字进行求和计算,那怎么办呢?我们就可以通过咱们今天学习的 闭包来解决这个需求。闭包的定义:在原创 2021-12-30 08:39:13 · 293 阅读 · 0 评论 -
SciPy 科学计算基础
SciPy 科学计算基础SciPy科学计算基础SciPy的constants模块SciPy的special模块SciPy.linalgSciPy中的优化SciPy中的图像处理SciPy中的信号处理SciPy科学计算基础Scipy是一款用于数学、科学和工程领域的Python工具包,可以处理插值、积分、优化、图像处理、常微分方程数值解的求解、信号处理等问题。SciPy的constants模块SciPy的constants模块包含了大量用于科学计算的常数。from scipy import consta原创 2021-12-13 17:28:13 · 1823 阅读 · 0 评论 -
【机器学习必备知识】NumPy线性代数详解
NumPy 线性代数前言numpy.dot()numpy.vdot()numpy.inner()numpy.matmulnumpy.linalg.det()numpy.linalg.solve()numpy.linalg.inv()前言机器学习里面用到许多线性代数的知识,因此NumPy的线性代数相关操作,你一定要懂点儿哦!NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明:函数描述dot两个数组的点积,即元素对应相乘。vdo原创 2021-12-10 20:38:56 · 766 阅读 · 0 评论 -
【Python】pinyin模块将中文转为拼音
【Python】pinyin模块将中文转为拼音示例代码示例代码可以看到数据不是很规范,城市名称既有中文又有英文,而且上海被存储为ShangHai和Shanghai。对于上海的问题,我们将拼音全部改为小写即可;对于中文和拼音混用的问题,可以使用相应的python库(如库pinyin)将中文转换为拼音后作统计。import pinyin#选择中国的数据df = star[star["Country"]=="CN"]df1 = df.copy()#将城市名改为小写df1["City"] =原创 2021-12-06 14:43:44 · 1254 阅读 · 1 评论 -
【Python】断言(assert)的用法,你真的懂吗?
【Python】断言(assert)的用法前言简介用法总结与注意事项前言看代码时知道是什么,但写代码时不建议经常使用,一直见,一直不明白,今天来解密。简介assertion(断言)在软件开发中是一种常用的调试方式,assertion就是在程序中的一条语句,它对一个boolean表达式进行检查,一个正确程序必须保证这个boolean表达式的值为true;如果该值为false,说明程序已经处于不正确的状态下,系统将给出警告并且退出。一般来说,assertion用于保证程序最基本、关键的正确性。asse原创 2021-12-05 21:36:47 · 22197 阅读 · 1 评论 -
Python 函数参数前面一个星号(*)和两个星号(**)的区别
Python 函数参数前面一个星号(*)和两个星号(**)的区别前言单星号(*):*agrs双星号(**):**kwargs附加前言在 Python 的函数中经常能看到输入的参数前面有一个或者两个星号,例如:def foo(param1, *param2):def bar(param1, **param2):这两种用法其实都是用来将任意个数的参数导入到 Python 函数中。单星号(*):*agrs将所有参数以元组(tuple)的形式导入:实例:def foo(param1, *para原创 2021-12-05 21:23:22 · 570 阅读 · 0 评论 -
【OS用法详解】os.path.abspath(__file__)&os.path.dirname()&os.path.basename(__file__)&os.path.join()
os.path.用法详解`os.path.abspath(__file__)`os.path.dirname()`os.path.basename(__file__)`os.path.join()os.path.abspath(__file__)os.path.dirname(__file__):返回脚本的绝对路径import osprint(os.path.abspath(__file__))D:\Python\PycharmProjects\pythonProject\crawl\os.p原创 2021-12-05 20:23:14 · 3096 阅读 · 0 评论 -
UnicodeEncodeError: ‘latin-1‘ codec can‘t encode characters in position 9-13: ordinal not in range(2
UnicodeEncodeError问题描述解决方案问题描述使用爬虫设置headers,出现报错原因:乱码UnicodeEncodeError: 'latin-1' codec can't encode characters in position 9-13: ordinal not in range(256)解决方案'type":2,"department":"人工智能学院","major":"大数据"}'.encode('utf-8').encode('utf-8'):在字符串后面添原创 2021-12-03 20:41:50 · 1060 阅读 · 0 评论 -
Python之html与markdown互相转换
Python之html与markdown互相转换前言1. html2text2. html2markdown3. pandoc4. 批处理前言Typora可以很容易的将md导出为html,我一直都有想法就是将html还原为markdown,于是在网上整理了几种方法,以便后期使用。如果你只是转换单个文件,推荐直接在线转换:Link Link Link1. html2textpip install html2text转换代码:import html2textmd_text = open('r原创 2021-11-25 15:26:50 · 5949 阅读 · 12 评论 -
【Pytorch】data.norm(几种范数(norm)的详细介绍)
范数(norm) 几种范数的简单介绍&data.norm()使用1. 范数(norm)的简单介绍1.1 L-P范数1.2 L0范数1.3 L1范数1.4 L2范数1.5 ∞-范数2. 矩阵范数2.1 1-范数2.2 2-范数2.3 ∞-范数2.4 F-范数2.6 核范数3. pytorch中x.norm(p=2,dim=1,keepdim=True)的理解3.1 方法介绍3.2 函数参数3.3 实例演示3.3.1 dim参数3.3.2 keepdim参数1. 范数(norm)的简单介绍什么是原创 2021-11-23 18:10:16 · 11465 阅读 · 0 评论 -
【特征提取】pd.get_dummies() 详解(One-Hot Encoding)
pd.get_dummies 详解Pandas.get_dummies 用法简单介绍主要参数介绍dataprefixprefix_sep其他参数(Parameters)Pandas.get_dummies 的用法可以对指定列进行get_dummies将指定列进行get_dummies 后合并到元数据中Pandas.get_dummies 用法简单介绍Pandas 中的 get_dummies 方法主要用于对类别型特征做 One-Hot 编码(独热编码)。pandas.get_dummies(data,原创 2021-11-23 16:48:08 · 10549 阅读 · 0 评论 -
PyCharm新建.py文件时添加默认信息(文末有点意思)
PyCharm新建.py文件时添加默认信息概述实例概述Pycharm使用VTL(Velocity Template Language)的语法规则来设计模板的。实例左上角–>(File)–>打开设置(settings)–>Editor–>File and Code Templates–>Python Script可用的预定义文件模板变量为:$ {PROJECT_NAME} - 当前项目的名称。$ {NAME} - 在文件创建过程中在“新建文件”对话框中指定的原创 2021-11-17 19:52:50 · 563 阅读 · 0 评论 -
【手把手教你】Jupyter Notebook切换Python虚拟环境
Jupyter Notebook切换Python虚拟环境问题描述解决方案问题描述因为需要在Jupyter Notebook使用不同版本的Python,便需要切换环境。解决方案1. 查看所有环境conda env list2.激活你要用的环境activate XXX3.安装 ipykernelconda install ipykernel4.将选择的conda环境注入Jupyter Notebookpython -m ipykernel install --user --name原创 2021-11-01 14:38:05 · 2201 阅读 · 3 评论 -
原理详解:PCA(explained_variance_ratio_与explained_variance_)
PCA(explained_variance_ratio_与explained_variance_)1. scikit-learn PCA类介绍2. sklearn.decomposition.PCA参数介绍3. PCA实例1. scikit-learn PCA类介绍PCA的方法explained_variance_ratio_计算了每个特征方差贡献率,所有总和为1,explained_variance_为方差值,通过合理使用这两个参数可以画出方差贡献率图或者方差值图,便于观察PCA降维最佳值。PCA原创 2021-10-27 16:56:54 · 11636 阅读 · 0 评论 -
from sklearn.datasets import make_blobs:聚类数据生成器
make_blobs:聚类数据生成器make_blobs聚类数据生成器简介make_blobs聚类数据生成器简介scikit中的make_blobs方法常被用来生成聚类算法的测试数据,直观地说,make_blobs会根据用户指定的特征数量、中心点数量、范围等来生成几类数据,这些数据可用于测试聚类算法的效果。make_blobs方法:sklearn.datasets.make_blobs(n_samples=100, n_features=2,centers=3, cluster_std=1.0, c原创 2021-10-27 16:47:02 · 3160 阅读 · 0 评论 -
Python:枚举列表中所有元素的可能组合
Python:枚举列表中所有元素的可能组合问题描述解决方案问题描述前言:比如有5个不同的产品,分别为a, b, c, d, e,需要列出所有可能的组合,因为每种产品存在“有”和“没有”2种可能,所以总共就有2的5次方,也就是32种可能;如何用Python进行枚举呢?解决方案from itertools import combinationsdef combine(temp_list, n): '''根据n获得列表中的所有可能组合(n个元素为一组)''' temp_list2 =原创 2021-10-27 13:12:21 · 3425 阅读 · 0 评论 -
Python的 u,r,b,f 分别什么意思?
Python的 u,r,b,f 分别什么意思?前言1. u: 表示unicode字符串,默认2. b: 表示二进制字符串,括号内3. r: 不转义字符串,要输出的内4. f: 包裹变量,方便字符串的定义前言我们经常在python当中看到以下内容:print(u'hi\thi\thi')print(b'hi\thi\thi')print(r'hi\thi\thi')print(f'hi{}')在其他语言里没见过类似的,所以特此记录!1. u: 表示unicode字符串,默认print(u'原创 2021-10-12 12:55:52 · 1658 阅读 · 0 评论 -
【Python3】浅谈string.ascii_letters & string.digits
浅谈:string.ascii_letters & string.digitsTest:string.ascii_letters & string.digitsAdditionalTest:string.ascii_letters & string.digits本文介绍Python3中String模块ascii_letters和digits方法,其中ascii_letters是生成所有字母,从a-z和A-Z,digits是生成所有数字0-9.示例如下:>>>原创 2021-10-07 10:46:53 · 3990 阅读 · 0 评论 -
【Numpy 最全矩阵操作】扩充维度/修改数组维度
【Numpy】扩充维度/修改数组维度1. np.broadcast2. np.broadcast_to3. np.expand_dims4. np.squeeze5. np.newaxis6. np.flatten7. np.swapaxes8. np.reshape/np.resize9. np.奇淫技巧1. np.broadcastnumpy.broadcast:用于模仿广播的对象,它返回一个对象,该对象封装了将一个数组广播到另一个数组的结果。该函数使用两个数组作为输入参数,如下实例:impor原创 2021-10-06 17:41:37 · 7713 阅读 · 0 评论 -
【搞懂PyTorch】torch.argmax() 函数详解
torch.argmax 函数详解1. 函数介绍2. 实例演示1. 函数介绍torch.argmax(input, dim=None, keepdim=False)返回指定维度最大值的序号dim给定的定义是:the demention to reduce.也就是把dim这个维度的,变成这个维度的最大值的index。dim的不同值表示不同维度。特别的在dim=0表示二维中的列,dim=1在二维矩阵中表示行。广泛的来说,我们不管一个矩阵是几维的,比如一个矩阵维度如下:(d0,d1,…,dn−1)原创 2021-10-05 11:42:09 · 36519 阅读 · 14 评论 -
【PyTorch】torch.topk() 函数详解
torch.topk 函数详解1. 作用2. 使用方法3. 实例演示1. 作用取一个tensor的topk元素(降序后的前k个大小的元素值及索引)2. 使用方法dim=0表示按照列求 topndim=1表示按照行求 topn默认情况下,dim=13. 实例演示任务一:取top1(最大值):pred = torch.tensor([[-0.5816, -0.3873, -1.0215, -1.0145, 0.4053], [ 0.7265, 1.4164, 1原创 2021-10-05 11:01:32 · 17445 阅读 · 0 评论