1、 MCP(Model Context Protocol,模型上下文协议)
由Anthropic公司推出,旨在为大型语言模型(LLM)与外部数据源、工具和服务提供标准化交互接口。其核心功能类似于“AI界的USB-C接口”,通过统一的协议让模型动态访问数据库、API、文件系统等外部资源,解决模型依赖静态训练数据的局限性。例如,接入导航软件的高德地图后,大模型可通过MCP精确计算路线时间,提升实时决策能力
其核心目标是解决以下问题:
- 数据孤岛: 模型无法直接访问实时数据或本地资源;
- 集成复杂性: 为每个工具编写独立接口导致开发成本高;
- 生态碎片化: 不同平台的工具调用机制缺乏统一标准;
- 安全隐患: 缺乏标准化的访问控制机制。
核心架构
MCP采用客户端-服务器架构,包含三个组件:
- 主机(Host):运行LLM的应用程序(如Claude Desktop、IDE插件);
- 客户端(Client):与服务器建立连接,管理会话和路由消息;
- 服务器(Server):提供资源访问、工具调用等能力的独立服务。
协议定义了四类核心交互原语
- 资源(Resources):通过URI标识的数据(如文件、API响应);
- 工具(Tools):可执行的动作(如发送邮件、执行代码);
- 提示(Prompts):预设的提示模板或工作流;
- 采样(Sampling):服务器主动请求模型推理的机制。
应用场景
开发工具集成: 在IDE中通过自然语言查询数据库、调用部署工具,开发工具集成,在IDE中通过自然语言查询数据库、调用部署工具;
自定义AI工作流: 通过MCP,用户可以将AI助手与外部数据源和工具连接,构建个性化的AI工作流。
企业级自动化应用: 在企业环境中,MCP可以连接ERP、CRM等系统,构建智能客服系统、自动化办公流程等,实现流程自动化,提高企业的运营效率。
本地数据处理: 在隐私保护前提下分析用户设备内的文件。
核心优势
统一接口: MCP提供了一种标准化的通信方式,简化了AI助手与外部工具的交互过程。
安全性: 通过MCP,可以限制AI助手对资源的访问权限,确保数据安全。
灵活性: MCP支持多种数据源和工具的集成,能够适应不同的应用场景。
采用CS架构的存在一定的局限性,这种架构可能在Agent断开连接时限制通信,难以支持大规模去中心化协作。
2、 ANP(Autonomous Negotiation Protocol,自主协商协议)
作为A2A的延伸,ANP专注于多智能体在动态环境中的自主协商与资源分配。其设计灵感源于博弈论和群体智能,支持智能体基于效用函数进行多轮迭代博弈,解决资源竞争、任务优先级冲突等问题。例如,在自动驾驶车队中,车辆通过ANP实时协商路径规划以应对突发路况变化
其设计受到Web3、语义网等技术影响,它重点关注:
- 去中心化身份: 基于W3C DID标准实现智能体身份管理;
- 协议协商: 支持动态协商通信协议和交互规则;
- 语义兼容: 利用JSON-LD、RDF等技术实现数据语义对齐。
技术架构
ANP采用三层架构:
- 身份与加密层:基于DID实现身份验证与数据加密;
- 元协议层:定义协议协商机制(如通信格式、QoS参数);
- 应用协议层:实现具体业务逻辑(如任务分配、资源调度)。
应用场景
物联网协同:跨厂商设备Agent的自主协作.在物联网场景中,ANP可以实现大量设备之间的去中心化协作,降低对中心服务器的依赖。
分布式AI训练: 协调异构计算节点的资源分配;
去中心化应用: 支持智能合约与AI Agent的交互。
智能家居: 可以实现不同品牌智能家居设备的无缝协作。例如,智能灯、智能窗帘和智能音箱可以通过ANP直接通信,无需依赖中心服务器。
智能驾驭: 在自动驾驶领域,ANP可以协调不同车辆的智能体之间的通信,提高交通安全性和效率。
核心优势
去中心化:智能体之间直接通信,无需依赖中心服务器,提高了系统的可靠性和安全性。
高效协作:通过ANP,智能体可以快速响应彼此的请求,提高协作效率。
可扩展性:ANP支持大量智能体的加入,能够适应复杂的网络环境。
P2P 架构和DID 认证让ANP更适合未来去中心化的Agent网络,但隐私和权限控制仍是挑战。
3、A2A(Agent-to-Agent Protocol,智能体间协议)
随着AI技术的发展,不同来源的智能体需要相互协作。由于技术背景、开发框架和数据格式的差异,智能体之间的通信和协作面临着诸多挑战,A2A协议能够有效解决这一问题。
由Google牵头制定,专注于不同框架、供应商的智能体之间的协作通信。通过标准化任务管理、能力发现、安全认证等机制,A2A让智能体像“外交官”一样跨平台协作,例如客户服务Agent与调度Agent共同处理用户需求 。其核心设计原则包括支持长时任务、多模态交互(如音频/视频流)以及基于现有技术栈(HTTP、JSON-RPC)的兼容性
设计目标
- 打破生态孤岛:解决多Agent协作的协议不兼容问题;
- 支持长时任务:处理耗时数小时至数天的复杂流程;
- 模态无关性:兼容文本、音频、视频等多模态交互。
技术架构
A2A基于HTTP、SSE(Server-Sent Events)和JSON-RPC构建,包含以下核心模块:
- 能力发现(Capability Discovery):通过Agent Card(JSON元数据)声明Agent能力;
- 任务管理(Task Management):以任务为单位管理多轮交互;
- 协作机制(Collaboration):支持Agent间消息传递与状态同步;
- 用户体验协商:根据终端设备动态调整内容呈现方式。
典型交互流程包括:
- 客户端Agent通过HTTP GET发现远程Agent能力;
- 通过SSE建立持久连接并发送任务请求;
- 远程Agent返回包含文本、表单、流媒体等内容的Message对象;
- 任务完成后生成Artifact(如文件、结构化数据)。
应用场景
跨系统流程自动化: 如招聘场景中,协调简历解析、面试安排、背调等Agent;
供应链管理优化: 连接库存管理、物流调度、需求预测等Agent。A2A可以协调不同企业的智能体,优化供应链流程。例如,一个物流智能体可以与一个仓储智能体协作,实时更新货物状态。
客户关系管理: 语音助手、工单系统、知识库Agent的协同响应。在跨平台客户管理中,A2A可以实现数据共享和协作。例如一个电商平台的智能客服可以与一个社交媒体平台的智能客服协作,提供更全面的客户支持。
医疗健康: A2A可以协调不同医疗机构的智能体,实现医疗数据的共享和协作。
核心优势
跨平台协作: A2A支持不同技术背景的智能体之间的协作,打破了系统孤岛。
灵活性: A2A允许智能体在非结构化模式下协作,适应复杂任务需求。
安全性: A2A通过标准化的协议确保智能体之间的通信安全。
A2A行业支持广泛,适合企业级应用,但可能受限于其专注于互操作性,不如ANP灵活。
A2A的推出,也反映了行业对Agent互操作性的迫切需求。不仅限于技术层面,还涉及企业应用的商业价值。例如,A2A的合作伙伴包括众多企业服务提供商如Deloitte和PwC,这表明其可能在企业数字化转型中扮演重要角色,超出了单纯的技术协议的范畴。
4、MCP、ANP、A2A的联系与区别
维度 | MCP | A2A | ANP |
---|---|---|---|
核心定位 | 模型与外部工具的交互接口 | 智能体间通信与协作 | 智能体间动态协商与资源优化 |
架构模式 | 客户端-服务端(CS) | 标准化通信协议 | 点对点(P2P) |
技术实现 | 基于JSON-RPC的API调用 | 基于HTTP、SSE、JSON-RPC的通信框架 | 结合博弈论模型(如纳什均衡)、联邦学习 |
应用场景 | 数据检索、工具调用(如查询数据库) | 跨平台任务协作(如多Agent协同办公) | 复杂资源分配(如微电网电力交易) |
身份认证 | OAuth标准 | 企业级Token认证 | W3C DID标准(去中心化身份认证) |
信息组织 | 结构化API请求与响应 | 任务生命周期管理与消息协商 | 语义网Linked Data技术 |
关键差异点:
- MCP vs A2A:MCP解决“工具连接”问题(模型如何调用外部资源),而A2A解决“智能体协作”问题(不同Agent如何沟通)。两者互补,如客户服务Agent通过A2A委托调度Agent,后者再通过MCP调用高德API获取路线610。
- A2A vs ANP:A2A提供基础通信框架,而ANP在此基础上增加动态协商能力。例如,A2A定义任务分配流程,ANP则通过效用博弈优化分配结果24。
- MCP vs ANP:MCP以模型为中心(Model-Centric),强调工具集成;ANP以智能体为中心(Agent-Centric),强调去中心化协作网络4。
联系与协同
- 生态互补性
- MCP为智能体提供“手和脚”(工具调用能力),A2A为智能体提供“共同语言”(协作协议),ANP则赋予“决策智慧”(动态协商能力),三者共同构建完整的智能体生态系统310。
- 示例:在智能制造中,AGV运输车(Agent)通过A2A协调任务,通过MCP调用仓库库存数据,再通过ANP协商最优运输路径29。
- 技术融合趋势
- A2A与ANP集成:A2A的任务管理模块可嵌入ANP的协商流程,例如在任务分配阶段触发资源竞价2。
- MCP与区块链结合:MCP的调用记录可通过智能合约上链,确保数据交互的透明性与不可篡改性2。
- 行业应用协同
- 在智慧城市中,交通信号灯Agent(A2A协作)通过MCP接入实时车流数据,并通过ANP动态调整信号周期29。
- 在金融领域,高频交易Agent通过ANP完成纳秒级订单匹配(协商),通过MCP获取市场数据(工具调用),再通过A2A与其他Agent同步策略26。
四、总结与展望
- 区别本质:MCP是“工具连接器”,A2A是“通信桥梁”,ANP是“策略大脑”。
- 未来趋势:三者将向多模态融合(如支持音视频流)、量子增强(加速复杂协商)等方向发展,推动智能体从“规则驱动”迈向“自主进化”。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!